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1 Characteristics of Time Series

Definition (Time series). A time series is a set of observations x, each recorded at time ¢.
If the set of times T is discrete, then the time series is discrete.

Definition (White noise). White noise is a time series {w;} where the w; are uncorrelated and

E(w;) = 0, Var(w;) = 02 < co. We denote white noise by w; ~ wn(0,02).
Some examples of time series are

o Moving average: used to “smooth” a series

1
vy = g(wt—l + wi + wit1)

is a moving average of order 3
o Autoregressive model: the output variable of an autoregressive model depends on past values

of the series, for example

Tt = Tg—1 — O.th_Q + wy
where w; is white noise

e Random walk with drift:
wt:5+xt_1+wt
with initial condition xg = 0, J is the drift, w; ~ wn(0,02).

Definition (Autocovariance function). The autocovariance function of a time series z; is defined

as
Yo (s, t) = Cov(zs, x¢)
U =>3"10aX;and V =377, b;Yj, then

Cov(U, V)= > aib;Cov(X;,Y;)

i=1j=1
Definition (Autocorrelation function (ACF)). The ACF of a time series z; is

V(85 1)
Va(s, $)Va(t, 1)

pw(‘S? t) =
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We can also look at the covariance and correlation functions of two time series z; and ;.

Definition (Cross-covariance function). The cross-covariance function of x; and y; is

/ny(S, t) - COV(]TS, yt)
Definition (Cross-correlation function (CCF)). The CCF of z; and y; is

'wa(37 t)
Va(5,8)7y(t, 1)

pxy(sa t) =

1.1 Stationary Time Series

Definition (Weakly staionary time series). A time series w; is weakly stationary if the following
hold:

(i) the mean function, p, is constant and independent of ¢

(ii) the autocovariance function, v,(s,t), depends on s and ¢ only through their absolute difference
|s —

We let stationary mean weakly stationary.

For autocovariance function, we can let s = t + h, so v,(s,t) = v,(h). If x; is stationary, then

vz (h) = ¢(|h|) where ¢ is some function of |h|. In this form, the ACF of a stationary time series is

1.1.1 Jointly Stationary Time Series

Definition (Jointly stationary). Two time series x; and y; are jointly stationary if x; and y; are
each respectively stationary and the cross-covariance function 7., (h) = Cov(z¢1p,y:) is a function

only of lag h.

Definition (CCF of jointly stationary). The CCF of jointly stationary time series x; and y; is

Yay(h)

pay(h) = ——F—
¥2(0)7,(0)

1.2 Estimation of Correlation

If a time series is stationary, then its mean is a constant u, thus we can estimate it by the sample

mean
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The variance of sample mean is

The sample autocovariance is

3alh) = 5 3 @ — ) w1~ 0)

with 4, (h) = A4z(—h) for h =0,1,...,n — 1. The sample ACF is thus

2 Time Series Regression

Consider the MLR model
xt = Bo + Brag + -+ Byzig + wi

where wy ~ N(0,02) for t =1,...,n. Let 2 = (1, 201, . .., 2t9) 7, B = (Bo, B, - - -

rewrite the model as
Tt = ﬁTZt + wy

2.1 Ordinary Least Squares Estimation
OLS estimation finds B that minimizes

n n

Q=Y wi=> (z,— ")

t=1 t=1

If the matrix >} ; 2/ is non-singular, then the LSE of 3 is

71,”/

B = (Z thtT> >z
t=1 t=1
Some properties of ,5’ are
- B(B)=p

. -1
o B~Ny(B,02C) wherep=gq+1,C = (2?21 ztth)

,B)T, thus we can
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If 62, is unknown, we can estimate using

 SSE
==

=MSE

2
Sw

where "
SSE = Z(l‘t — Bth)Q
t=0
There are also a few tests we can consider. If we want to test each §; individually in H

then consider the test statistic

A

Bi—Bi .
Sw/Cii ¢

where ¢;; is the ith element on the diagonal of C.

t =

If we want to test whether only a subset of r < ¢ independent variables, z 1., = {24, .

influencing x; (i.e.: Br41,..., 8, =0), we use the test statistic
(SSE, — SSE)/(q—r) SSR/(¢g—r) MSR g—r
F = = = ~ FTL*
SSE/(n —p) SSE/(n—p) MSE P

We reject at level o if Fi. > Fjl” () where F, is the value of test statistic under Hy.

:51':07

--;Ztr} is

Suppose we have a model with &k coefficients (smaller model). Then, the maximum likelihood

estimator for o7 is
SSE(k)
n
where SSE(K) is the SSE under the smaller model. Define Akaike’s Information Criter

by

6 =

n + 2k

AIC = log(63) +

The value of k yielding the smallest AIC' indicates the best model.

3 Exploratory Data Analysis

Definition. The trend stationary model can be written as
Tr =t + Yt

where p; is the observed trend and y; is a stationary process.

Denote the first difference by

Vo, =xp — w41
Definition (Backshift operator). The backshift operator is
Bry =mx1

We can extend this definition to powers: since Bxy;_1 = xy_o but x;_1 = Buxy, then

ia (AIC)

we have
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B%x; = x,_5. By induction, we have BFz, = 2.
Definition (Differences). Differences of order d are

v?=(1-B)¢

4 ARIMA Models

4.1 AR(p) Models

Definition (AR(p) model). An autoregressive model of order p, denoted AR(p), is of the form
Ty = P1&4—1 + Paxi—2 + -+ + Gpxi—p + Wy

where ; is stationary, wy ~ wn(0,02), ¢1,...,$, are constants with ¢, # 0.

If the mean p of z; is non-zero, then we can replace x; with x; — u, so

Ty —p=Q1(Tp—1 — )+ A Sp(wp — p) +wy

= rr=a+ O1T-1 o+ GpTp + Wy

where o = p1(1 — ¢1 — - - - — ¢p). Using the backshift operator,
(1-¢1B— $poB% — - — opBY)ry = wp = ¢(B)ry = wy
where ¢ = (1 — ¢1B — ¢oB2 — -+ — ¢, BP).

Proposition. Let z; = ¢x¢—1 +w; be an AR(1) process where |¢|< 1 and sup, Var(z;) < co. Then

o
o Iy = Z ¢’ w—j. That is, a4 is a linear process
Jj=0

o The autovariance function (k) is

0.2 ¢h
h) =Y
¢ The autocorrelation function is
p(h) = ¢"

Proof. To show x; is a linear process, by recursion we have

Ty = QT_1 + Wy

= p(Ppri—o + wi—1) + wy

k—1
) :
= ¢ wik + Z ¢ we—;
7=0
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and so on.

For the autocovariance,
v(h) = Cov(@isn, 1)

_ Z Z gbigbjCov(th—z‘a wi—j)

i=0 j=0
m . .
— Jg, Z ¢]+h¢]
§=0
0 .
=0ud” Y ¢”
§=0
2 1h
= fiis? since |¢|< 1
For the ACF, since z; is stationary and sup, Var(x;) < oo, then
og 0"
Y(h) _ 1=
gl i
as required. [

4.1.1 Explosive Models and Causality

Consider the simple walk x; = ;1 + wy, wy ~ wy,(0,02). Since
v(s,t) = min{s, t}o?

T4 is not stationary.
An AR(1) process z; = ¢xy—1 + wy with |¢|> 1 is explosive since its values will increase quickly.

Since |¢| 1< 1, this suggests the stationary future dependent AR(1) model

oo
zp=—y ¢ wiyg
=1

4.2 MA(q) Models

Definition (MA(q) models). The moving average model of order ¢, MA(q), is
Ty = Wi + Orwi—1 + Oowp—g + - - - + Ogwi—g
where w; ~ wn(0,02), 61, ...,0, are constants where 6, # 0.

We can rewrite x; = 0(B)w; where §(B) = 1+ 61B + 028> + --- + ,B% is the moving average

operator.
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4.2.1 Invertibility

If |0]< 1, then MA(1) as wy = —fw;—1 can be written as

Wt = Z(—Q)jl‘tfj

J=0

4.3 ARMA (p,q) models

Definition. A time series {x; : t = 0,4+1,£2,...} is ARMA(p, q) if it’s stationary and
Ty = P11+ -+ Gpxi_p + Wi + Orwi—1 + - - - + Oqwi—g
with ¢, 0, # 0, o2 > 0.
If z; has nonzero mean f, then set & = pu(1 — ¢1 — g2 — - -+ — ¢,) and write the model as
Tp =+ G121+ -+ GpTi—p + Wi + Orwi—1 + - - + Oqwi—qg

where w; ~ wn(0,02).

4.3.1 Parameter redundancy

Consider z; = 0.5z;_1 — 0.5w;—1 + wy, which looks ARMA(1, 1). However,this is equivalent to
(1-0.5B)z = (1 -0.5B)w; <= =z = wy

S0 x¢ is just white noise. This is due to paramter redundancy.

Definition. The AR and MA polynomials are respectively defined as
$(2) = 1— 12— ¢2z° — - — §pP, by 0
0(2) =1+ 012+ 022" + -+ + 0,290, £ 0

where z € C.

4.4 Causality and Invertibility

Definition (Causal model). An ARMA(p, q) model is causal if {z; : ¢ = 0,£1,£2,...} can be

written as a one-sided linear process:
o0
2y =Y jwij = Y(Bwy
=0

where ¢(B) := 372 VB, Yoi2olthjl< 0o, We set g = 1.
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Definition (Invertible model). An ARMA(p, ¢) model is invertible if {x; : ¢ = 0,£1,£2,...} can

be written as -
W(B){Et = Zﬂ'jxt_j = W¢
=0
where m(B) = 32221 B/, 352 |m;]< 00. Set mp = 1.

Proposition. An ARMA (p, ¢) model is causal iff ¢(z) # 0 for |2|< 1. The coefficients v; of the

linear process can be determined by solving

S0
#(E) = 3 vy = S bl

An ARMA((p, q) process is causal only when the roots of ¢(z) lie outside the unit circle (i.e.: ¢(z) =0
only if |z[> 1).

Proposition. An ARMA(p, ¢) model is invertible iff 6(z) # 0 for |z|< 1. The coefficients 7; can

be solved through

(2 zoow-zj:M zI<1
(2= 3 w2 = Gy IS

An ARMA(p, q) process is invertible only when roots of 6(z) lie outside unit circle (i.e.: 6(z) =0
only if |z[> 1).

4.4.1 Partial ACF

For a MA(q) model, the ACF is 0 for lag values greater than h. Since 6, # 0, then the ACF will
not be 0 at lag ¢, thus we can use this to identify MA(q) models. For AR models, however, use the
partial ACF (PACF) to identify.

Definition. Suppose X, Y and Z are random variables. By regression X on Z to obtain X and
Y on Z to obtain Y, the PACF of X and Y given Z is

px,y|z = Corr(X — XY - 17)
Let ¢ be stationary with mean 0. For h > 2, let #;,, denote the regression of 4 on {T¢1n—1, Tesn—2y- .., Te4+1}:
Zern = P1%t4n—1 + BoZepn—2 + -+ Bho12i41
Let Z; denote the regression of z; on {Z41,...,Tip_1} :
2y = P1%e41 + 0+ Br-1Tt4n—1

Since z; is stationary, then all the f; are the same in both regressions (i.e.: f; = ;). So, the
PACF of z;, denoted ¢y, is

dnp = Corr(xppp, — Tegn, T4 — &)
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with ¢11 = Corr(x: + 1, 2¢) = p(1).
The PACF represents the correlation between x4 and x; with linear dependence removed.
4.5 Forecasting

Goal: To predict future values of a time series x4, for m = 1,2,... based on colleted data

Tim = {T1,...,Zn}.
o For our purposes, assume a stationary z;

Definition. The minimum MSE predictor of z,1, is

xz—&-m = E(xn-l-m ‘ mlzn)

since conditional expectation minimizes E[2, 1, — g(21.,)]? over all functions g of z1.,.

e For our purposes, we only consider linear predictors:
n
n
Tpym = Q0 + Z QkLk
k=1

This is called the best linear predictor (BLP).

Given data z1,...,T,, the BLP coefficients in

o0
Tyim = Q0 + Z apxp,m > 1
k=1

are found by solving

E[(‘Tn-i-m - szrm)xk] =0

forall k=0,1,...,n. We set g = 1.

4.5.1 Prediction Error

Definition. The mean squared m-step-ahead prediction error is

PTL

2
m+n — E[l‘n+m - wg-‘,—m}

We use prediction intervals to assess precision of forecasts. These intervals are given by

'/I;Z—Q—m + C’01/2 \/ P?’TLL+m

4.6 Estimation

Assume observations z1, ..., x, are from a causal and invertible Gaussian ARMA ((p, ¢) model. The

goal is to estimate the parameters of the model and o2,.
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Consider an AR(p) zy = ¢p124—1 + - - + ¢pxi—p + wy. The Yule-Walker equations are

y(h) = p1y(h — 1) + gay(h — 2) + - + ¢py(h — p)
o =7(0) = p1y(1) — -+ — ¢ (p)

In matrix notation,
Lo = oo = ¢(0) — '

where I'y, = (v(k —j))?k:1 is a p x p matrix and ¢ = (¢1,...,¢,)T and v, = (y(1),...,v(p))L. We
estimate using Method of Moments:

So, the PACF satisfies
Vw5 N(0,1)

for h > p.

4.7 ARIMA Models
Definition. A process x; is ARIMA(p,d, q) if
Viz, = (1 — B)%xy

is ARMA(p, ¢). In general,
¢(B)(1 — B)*wy = 0(B)wy

If E(Vx;) = u, then
$(B)(1 — B)x; = 6 + 6(B)w;

where § = pu(1 —¢1 — -+ — ¢p).

4.7.1 Fitting ARIMA Models
Steps:

1. Plot the data

10
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2. Transform the data if needed

3. Identifying dependence orders of model from ACF/PACF
4. Parameter estimation

5. Diagnostics

o Standardized residuals computed by

where fvi_l is the one-step-ahead prediction of x; based on the fitted model and Ptt_l is

the prediction error

6. Model choice

For regression with autocorrelated errors, the model looks like
T
Yyt = Zﬁjztj + x;
j=1

where x; is a process with covariance function 7, (s,t). To identify the model, these are the steps:

1. Run regular regression of y; on 21, ..., 2t and retain the residuals
2. Identify an ARMA model for the residuals Z; following the steps above

3. Run weighted least squares on regression model with autocorrelated errors using model in

step 2

4. Inspect residuals Wy
4.7.2 Multiplicative Seasonal ARMIA Models
Definition. The pure seasonal ARMA, denoted ARMA(P, Q) is
Op(B%)xy = Og(B*)wy
where

dp(B*)=1— 0B — ®B* — ... — dpBF®

0q(B*) =1+ 01B° +03B% + ... + OB
are respectively the seasonal autogressive and moving average operators of orders P and ) with
period s.

Similary to an ARMA(p, ¢) model, this model is causal/invertible only if the roots of ®p(2)/ O¢g(z)
lie outside the unit circle. We estimate the orders P and () with the chart

11
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AR(P)s MA(Q)s ARMA(P,Q);
ACF* Tails off at lags ks, | Cuts off after Tails off at
k=1,2,--- lag Qs lags ks
PACF* * | Cuts off after Tails off at lags ks | Tails off
lag Ps k=1,2,---, lags ks

This chart can also be used to identify the order of regular ARMA models, albeit without the s.
In general, seasonal and nonseasonal operators are combined into a model ARMA (p, q) x (P,Q)s,
given by

p(B*)¢(B)xr = Og(B*)0(B)w;

Definition. A SARIMA model ARIMA(p,d,q) x (P, D,Q)s is given by
®p(B*)p(B)VEV gy = § + O (B*)0(B)w;

where VP = (1 — B%)P .

5 Spectal Analyis and Filtering

Consider a series
q

2y =Y [Up cos(2mwyt) + Upo sin(2mwyt)]
k=1

where Uy and Upo are uncorrelated with mean 0, variance a,%. The ACF of this series is

q
Yz (h) = Z o7 cos(2mwih)
k=1

5.1 Estimation

For any time series sample 1, ..., z,, if n is odd, then we can write
n—1

=
Ty = ag + Z laj cos(2mtj/n) + bjsin(2ntj/n)]
j=1

fort=1,...,n. If nis even, then

[

x =ap + Y [a;cos(2mtj/n) + bjsin(2wtj/n)]

J=1

For the coefficients, choose ag = z and

2 n
aj = ; xy cos(2mtj/n)

12
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z": xysin(2mtj/n)

t=1

b =

SEEN

Definition. The scaled periodigram is P(j | n) = a3 + b3.
This function indicates which frequency components are large in magnitude and which are small.
It serves as an estimate of ajz corresponding to w; = %
Definition. The discrete Fourier transform is
1 n n
d(j|n)=n"2 (Z xy cos(2mtj/n) — int sin(27rtj/n)>
t=1 t=1
Rewriting in Euler form,
n
d(j | m) = n™3 3 et
t=1

The periodogram is

n 2 n 2
ld(j | n)|?= % (Z T cos(27rtj/n)> +% (Z Ty sin(27rtj/n)>
t=1

t=1

Notice that the scaled periodogram is P(j | n) = 2|d(j | n)[>.

5.2 The Spectral Density

If {x4}, is a stationary time series with autocovariance y(h), then there exists a unique monotically

increasing function F(w) with F(—o0) = F(—1) =0, F(c0) = F(3) = v(0) such that

1) = [ merar )

1
2

If 372 o|v(h)|< oo, then it has the reprsentation

1
1) = [ F)emds
as the inverse Fourier transform of the spectral density

<w<

N | —

Fl)= 3 (e 2mon L

h=—o00
The spectral density behaves like any density function:

« flw)=0

o flw)=f(-w)
For h = 0, we have that

13
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Some properties of the spectral density:

o If f(w),g(w) are spectral densities such that

1

’Yf(h) _ _5 f(w)ef%riwhdw — ‘/_2 g(w)e%riwhdw — 'Yg(h)

1 1
2 2
then the two spectral densities are equal (i.e. the spectral density is unique)

o Ifyr =322 ajm—; where 3552 aj|< oo, let A(w) = 372 aje” ™ Then f,(w) =
|A(w)]? fo(w)

o If x; is ARMA(p, ¢) with autoregressive operator ¢(z) and moving average operator 6(z), then

g ‘9(672771‘0.1”2

T

We can relate this to the periodogram. Let w; = % Then the DFT is

n
d(wj) = n"2 the_%i“’ft

t=1
Solve for z; using the inverse DFT

1n71
== N 2wt
Ty =mn" 2 E d(wj)e ™
Jj=0

The periodogram is I(w;) = |d(w;)|? and is the sample version of f(w;). Thus the periodogram can
be viewed as the sample spectral density.
If 2 = 352 o Yjwe—y with 3252 [h;|< oo where wy ~ wn(0, 02), then for any collection of m

distinct frequencies w; € (0, 1) with wj.,, — w;, then

QI(Wj:n) d 2
Flag) 0

provided f(wj) for j =1,...,m. Thus, a 100(1 — a)% confidence interval for f(w) is

221(“‘)3':72 < f(w) < 212‘*){;71)
x3(1—9) x3(5)
5.3 Non-parametric estimation
For w* = wj; + %, let
B:{w wj—— <w §wj+}
n n

where L = 2m + 1 is odd, chosen such that
k
flwi+ o f(w)

14
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for —-m <k <m.

Definition. The smoothed periodogram is defined as
- 1 & k
Fer= 3 1wt y)

This function satisfies _
2L f(w) ~ 2
flw)
so a 100(1 — «)%confidence interval of f(w) is

2L f(w)
X%L(l -5)
Definition. A parametric spectral estimator is obtained by fitting an AR(p) where the order p is
determined by AIC. If 1, ... ,qu and o2 are the fitted AR(p) to x4, then

2Lf(w)
S W)=z

) = e

where ¢(z) =1 — pIy éjzj.
A 100(1 — @)% confidence interval of f,(w) is

fx(w) < fal fx(w)

1+02a/2 B ].—CZa/Q
where C' = \/%p and z,/9 is the a/2 quantile of N'(0,1).

5.4 Multiple series and cross-spectra

The cross-covariance of jointly stationary x; and y; has the representation

1
2 .
Yay(h) = [ fay(w)e™ dw

NI

for h =0,+1,42,... where fyy(w) is the cross-spectrum defined as

Foyw) = 3 ay(h)e "

h=—o00
We can rewrite fi,(w) in polar form:
fay(w) = Z Yay(h) cos(2mwh) — i Z Yay(h) sin(2rwh)
h=—o0 h=—o00

Since Yzy (h) = yyz(—h), then fiy(w) = f;,(w) where * denotes the conjugate of a complex number.

15
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Definition. The squared coherence function is

| fya(w)[?
Poe = T2 0

(W) fy (W)

16
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