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1 Characteristics of Time Series

Definition (Time series). A time series is a set of observations xt, each recorded at time t.

If the set of times T0 is discrete, then the time series is discrete.

Definition (White noise). White noise is a time series {wt} where the wt are uncorrelated and
E(wt) = 0, Var(wt) = σ2

w < ∞. We denote white noise by wt ∼ wn(0, σ2
w).

Some examples of time series are

• Moving average: used to “smooth” a series

vt = 1
3(wt−1 + wt + wt+1)

is a moving average of order 3

• Autoregressive model: the output variable of an autoregressive model depends on past values
of the series, for example

xt = xt−1 = 0.9xt−2 + wt

where wt is white noise

• Random walk with drift:
xt = δ + xt−1 + wt

with initial condition x0 = 0, δ is the drift, wt ∼ wn(0, σ2
w).

Definition (Autocovariance function). The autocovariance function of a time series xt is defined
as

γx(s, t) = Cov(xs, xt)

If U = ∑n
i=1 aiXi and V = ∑m

j=1 bjYj , then

Cov(U, V ) =
n∑

i=1

m∑
j=1

aibjCov(Xi, Yj)

Definition (Autocorrelation function (ACF)). The ACF of a time series xt is

ρx(s, t) = γx(s, t)√
γx(s, s)γx(t, t)
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We can also look at the covariance and correlation functions of two time series xt and yt.

Definition (Cross-covariance function). The cross-covariance function of xt and yt is

γxy(s, t) = Cov(xs, yt)

Definition (Cross-correlation function (CCF)). The CCF of xt and yt is

ρxy(s, t) = γxy(s, t)√
γx(s, s)γy(t, t)

1.1 Stationary Time Series

Definition (Weakly staionary time series). A time series wt is weakly stationary if the following
hold:

(i) the mean function, µt, is constant and independent of t

(ii) the autocovariance function, γx(s, t), depends on s and t only through their absolute difference
|s− t|

We let stationary mean weakly stationary.

For autocovariance function, we can let s = t + h, so γx(s, t) = γx(h). If xt is stationary, then
γx(h) = ϕ(|h|) where ϕ is some function of |h|. In this form, the ACF of a stationary time series is

ρ(h) = γ(h)
γ(0)

1.1.1 Jointly Stationary Time Series

Definition (Jointly stationary). Two time series xt and yt are jointly stationary if xt and yt are
each respectively stationary and the cross-covariance function γxy(h) = Cov(xt+h, yt) is a function
only of lag h.

Definition (CCF of jointly stationary). The CCF of jointly stationary time series xt and yt is

ρxy(h) = γxy(h)√
γx(0)γy(0)

1.2 Estimation of Correlation

If a time series is stationary, then its mean is a constant µ, thus we can estimate it by the sample
mean

x̄ = 1
n

n∑
t=1

xt
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The variance of sample mean is

Var(x̄) = Var
(

1
n

n∑
t=1

xt

)

= 1
n2 Cov

(
n∑

t=1
xt,

n∑
s=1

xs

)

= 1
n

n∑
h=−n

(
1 − |h|

n

)
γx(h)

The sample autocovariance is

γ̂x(h) = 1
n

n=h∑
t=1

(xt+h − x̄)(xt − x̄)

with γ̂x(h) = γ̂x(−h) for h = 0, 1, . . . , n− 1. The sample ACF is thus

ρ̂(h) = γ̂(h)
γ̂(0)

2 Time Series Regression

Consider the MLR model
xt = β0 + β1zt1 + · · · + βqztq + wt

where wt ∼ N (0, σ2
w) for t = 1, . . . , n. Let zt = (1, zt1, . . . , ztq)T , β = (β0, β1, . . . , βq)T , thus we can

rewrite the model as
xt = βT zt + wt

2.1 Ordinary Least Squares Estimation

OLS estimation finds β̂ that minimizes

Q =
n∑

t=1
w2

t =
n∑

t=1
(xt − βT zt)2

If the matrix ∑n
t=1 ztz

T
t is non-singular, then the LSE of β is

β̂ =
(

n∑
t=1

ztz
T
t

)−1 n∑
t=1

ztxt

Some properties of β̂ are

• E(β̂) = β

• β̂ ∼ Np(β, σ2
wC) where p = q + 1, C =

(∑n
t=1 ztz

T
t

)−1
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If σ̂2
w is unknown, we can estimate using

s2
w = MSE = SSE

n− p

where
SSE =

n∑
t=0

(xt − β̂T zt)2

There are also a few tests we can consider. If we want to test each βi individually in H0 : βi = 0,
then consider the test statistic

t = β̂i − βi

sw
√
cii

∼ tn−p

where cii is the ith element on the diagonal of C.
If we want to test whether only a subset of r < q independent variables, zt,1:r = {zt1, . . . , ztr} is
influencing xt (i.e.: βr+1, . . . , βq = 0), we use the test statistic

F = (SSEr − SSE)/(q − r)
SSE/(n− p) = SSR/(q − r)

SSE/(n− p) = MSR

MSE
∼ F q−r

n−p

We reject at level α if Fc > F q−r
n−p(α) where Fc is the value of test statistic under H0.

Suppose we have a model with k coefficients (smaller model). Then, the maximum likelihood
estimator for σ2

k is

σ̂2
k = SSE(k)

n

where SSE(K) is the SSE under the smaller model. Define Akaike’s Information Criteria (AIC)
by

AIC = log(σ̂2
k) + n+ 2k

n

The value of k yielding the smallest AIC indicates the best model.

3 Exploratory Data Analysis

Definition. The trend stationary model can be written as

xt = µt + yt

where µt is the observed trend and yt is a stationary process.

Denote the first difference by
∇xt = xt − xt−1

Definition (Backshift operator). The backshift operator is

Bxt = xt−1

We can extend this definition to powers: since Bxt−1 = xt−2 but xt−1 = Bxt, then we have
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B2xt = xt−2. By induction, we have Bkxt = xt−k.

Definition (Differences). Differences of order d are

∇d = (1 −B)d

4 ARIMA Models

4.1 AR(p) Models

Definition (AR(p) model). An autoregressive model of order p, denoted AR(p), is of the form

xt = ϕ1xt−1 + ϕ2xt−2 + · · · + ϕpxt−p + wt

where xt is stationary, wt ∼ wn(0, σ2
w), ϕ1, . . . , ϕp are constants with ϕp ̸= 0.

If the mean µ of xt is non-zero, then we can replace xt with xt − µ, so

xt − µ = ϕ1(xt−1 − µ) + · · · + ϕp(xt−p − µ) + wt

⇐⇒ xt = α+ ϕ1xt−1 + · · · + ϕpxt−p + wt

where α = µ(1 − ϕ1 − · · · − ϕp). Using the backshift operator,

(1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p)xt = wt =⇒ ϕ(B)xt = wt

where ϕB = (1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p).

Proposition. Let xt = ϕxt−1 +wt be an AR(1) process where |ϕ|< 1 and supt Var(xt) < ∞. Then

• xt =
∞∑

j=0
ϕjwt−j . That is, xt is a linear process

• The autovariance function γ(h) is

γ(h) = σ2
wϕ

h

1 − ϕ2

• The autocorrelation function is
ρ(h) = ϕh

Proof. To show xt is a linear process, by recursion we have

xt = ϕxt−1 + wt

= ϕ(ϕxt−2 + wt−1) + wt

= · · ·

= ϕkxt−k +
k−1∑
j=0

ϕjwt−j
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and so on.
For the autocovariance,

γ(h) = Cov(xt+h, xt)

=
∞∑

i=0

∞∑
j=0

ϕiϕjCov(wt+h−i, wt−j)

= σ2
w

∞∑
j=0

ϕj+hϕj

= σ2
wϕ

2
∞∑

j=0
ϕ2j

= σ2
wϕ

h

1 − ϕ2 since |ϕ|< 1

For the ACF, since xt is stationary and supt Var(xt) < ∞, then

ρ(h) = γ(h)
γ(0) =

σ2
wϕh

1−ϕ2

σ2
w

1−ϕ2

= ϕh

as required. ■

4.1.1 Explosive Models and Causality

Consider the simple walk xt = xt−1 + wt, wt ∼ wn(0, σ2
w). Since

γ(s, t) = min{s, t}σ2
w

xt is not stationary.
An AR(1) process xt = ϕxt−1 + wt with |ϕ|> 1 is explosive since its values will increase quickly.
Since |ϕ|−1< 1, this suggests the stationary future dependent AR(1) model

xt = −
∞∑

j=1
ϕ−jwt+j

4.2 MA(q) Models

Definition (MA(q) models). The moving average model of order q, MA(q), is

xt = wt + θ1wt−1 + θ2wt−2 + · · · + θqwt−q

where wt ∼ wn(0, σ2
w), θ1, . . . , θq are constants where θq ̸= 0.

We can rewrite xt = θ(B)wt where θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q is the moving average
operator.
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4.2.1 Invertibility

If |θ|< 1, then MA(1) as wt = −θwt−1 can be written as

wt =
∞∑

j=0
(−θ)jxt−j

4.3 ARMA(p, q) models

Definition. A time series {xt : t = 0,±1,±2, . . .} is ARMA(p, q) if it’s stationary and

xt = ϕ1xt−1 + · · · + ϕpxt−p + wt + θ1wt−1 + · · · + θqwt−q

with ϕp, θq ̸= 0, σ2
w > 0.

If xt has nonzero mean µ, then set α = µ(1 − ϕ1 − ϕ2 − · · · − ϕp) and write the model as

xt = α+ ϕ1xt−1 + · · · + ϕpxt−p + wt + θ1wt−1 + · · · + θqwt−q

where wt ∼ wn(0, σ2
w).

4.3.1 Parameter redundancy

Consider xt = 0.5xt−1 − 0.5wt−1 + wt, which looks ARMA(1, 1). However,this is equivalent to

(1 − 0.5B)xt = (1 − 0.5B)wt ⇐⇒ xt = wt

so xt is just white noise. This is due to paramter redundancy.

Definition. The AR and MA polynomials are respectively defined as

ϕ(z) = 1 − ϕ1z − ϕ2z
2 − · · · − ϕpz

p, ϕp ̸= 0

θ(z) = 1 + θ1z + θ2z
2 + · · · + θqz

q, θq ̸= 0

where z ∈ C.

4.4 Causality and Invertibility

Definition (Causal model). An ARMA(p, q) model is causal if {xt : t = 0,±1,±2, . . .} can be
written as a one-sided linear process:

xt =
∞∑

j=0
ψjwt−j = ψ(B)wt

where ψ(B) := ∑∞
j=0 ψjB

j , ∑∞
j=0|ψj |< ∞. We set ψ0 = 1.
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Definition (Invertible model). An ARMA(p, q) model is invertible if {xt : t = 0,±1,±2, . . .} can
be written as

π(B)xt =
∞∑

j=0
πjxt−j = wt

where π(B) = ∑∞
j=0 πjB

j , ∑∞
j=0|πj |< ∞. Set π0 = 1.

Proposition. An ARMA(p, q) model is causal iff ϕ(z) ̸= 0 for |z|≤ 1. The coefficients ψj of the
linear process can be determined by solving

ψ(z) =
∞∑

j=0
ψjz

j = θ(z)
ϕ(z) , |z|≤ 1

An ARMA(p, q) process is causal only when the roots of ϕ(z) lie outside the unit circle (i.e.: ϕ(z) = 0
only if |z|> 1).

Proposition. An ARMA(p, q) model is invertible iff θ(z) ̸= 0 for |z|≤ 1. The coefficients πj can
be solved through

π(z) =
∞∑

j=0
πjz

j = ϕ(z)
θ(z) , |z|≤ 1

An ARMA(p, q) process is invertible only when roots of θ(z) lie outside unit circle (i.e.: θ(z) = 0
only if |z|> 1).

4.4.1 Partial ACF

For a MA(q) model, the ACF is 0 for lag values greater than h. Since θq ̸= 0, then the ACF will
not be 0 at lag q, thus we can use this to identify MA(q) models. For AR models, however, use the
partial ACF (PACF) to identify.

Definition. Suppose X, Y and Z are random variables. By regression X on Z to obtain X̂ and
Y on Z to obtain Ŷ , the PACF of X and Y given Z is

ρX,Y |Z = Corr(X − X̂, Y − Ŷ )

Let xt be stationary with mean 0. For h ≥ 2, let x̂t+h denote the regression of xt+h on {xt+h−1, xt+h−2, . . . , xt+1}:

x̂t+h = β1xt+h−1 + β2xt+h−2 + · · · + βh−1xt+1

Let x̂t denote the regression of xt on {xt+1, . . . , xt+h−1} :

x̂t = β1xt+1 + · · · + βh−1xt+h−1

Since xt is stationary, then all the βk are the same in both regressions (i.e.: βk = β′
k). So, the

PACF of xt, denoted ϕhh, is
ϕhh = Corr(xt+h − x̂t+h, xt − x̂t)
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with ϕ11 = Corr(xt + 1, xt) = ρ(1).
The PACF represents the correlation between xt+h and xt with linear dependence removed.

4.5 Forecasting

Goal: To predict future values of a time series xn+m for m = 1, 2, . . . based on colleted data
x1:n = {x1, . . . , xn}.

• For our purposes, assume a stationary xt

Definition. The minimum MSE predictor of xn+m is

xn
n+m = E(xn+m | x1:n)

since conditional expectation minimizes E[xn+m − g(x1:n)]2 over all functions g of x1:n.

• For our purposes, we only consider linear predictors:

xn
n+m = α0 +

n∑
k=1

αkxk

This is called the best linear predictor (BLP).

Given data x1, . . . , xn, the BLP coefficients in

xn
n+m = α0 +

∞∑
k=1

αkxk,m ≥ 1

are found by solving
E[(xn+m − xn

n+m)xk] = 0

for all k = 0, 1, . . . , n. We set x0 = 1.

4.5.1 Prediction Error

Definition. The mean squared m-step-ahead prediction error is

Pn
m+n = E[xn+m − xn

n+m]2

We use prediction intervals to assess precision of forecasts. These intervals are given by

xn
n+m ± Cα/2

√
Pn

n+m

4.6 Estimation

Assume observations x1, . . . , xn are from a causal and invertible Gaussian ARMA(p, q) model. The
goal is to estimate the parameters of the model and σ2

w.

9



STA457 Notes Ian Zhang

Consider an AR(p) xt = ϕ1xt−1 + · · · + ϕpxt−p + wt. The Yule-Walker equations are

γ(h) = ϕ1γ(h− 1) + ϕ2γ(h− 2) + · · · + ϕpγ(h− p)

σ2
w = γ(0) − ϕ1γ(1) − · · · − ϕpγ(p)

In matrix notation,
Γpϕ = γp σ2

w = ϕ(0) − ϕ′γp

where Γp = (γ(k− j))p
j,k=1 is a p× p matrix and ϕ = (ϕ1, . . . , ϕp)T and γp = (γ(1), . . . , γ(p))T . We

estimate using Method of Moments:

ϕ̂ = Γ̂−1
p γ̂(h) σ̂2

w = γ̂(0) − γ̂T
p Γ̂−1

p γ̂p

We can also use the sample ACF:

ϕ̂ = R̂−1
p ρ̂p σ̂2

w = γ̂(0)[1 − ρ̂T
p R̂

−1
p ρ̂p]

The asymptotic behaviour of Yule-Walker estimators for a causal AR(p) is
√
n(ϕ̂− ϕ) d→ N (0, σ2

wΓ−1
p )

σ̂2
w

p→ σ2
w

So, the PACF satisfies
√
nϕ̂hh

d→ N (0, 1)

for h > p.

4.7 ARIMA Models

Definition. A process xt is ARIMA(p, d, q) if

∇dxt = (1 −B)dxt

is ARMA(p, q). In general,
ϕ(B)(1 −B)dxt = θ(B)wt

If E(∇dxt) = µ, then
ϕ(B)(1 −B)dxt = δ + θ(B)wt

where δ = µ(1 − ϕ1 − · · · − ϕp).

4.7.1 Fitting ARIMA Models

Steps:

1. Plot the data
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2. Transform the data if needed

3. Identifying dependence orders of model from ACF/PACF

4. Parameter estimation

5. Diagnostics

• Standardized residuals computed by

et = xt − x̂t−1
t√

P̂ t−1
t

where x̂t−1
t is the one-step-ahead prediction of xt based on the fitted model and P̂ t−1

t is
the prediction error

6. Model choice

For regression with autocorrelated errors, the model looks like

yt =
r∑

j=1
βjztj + xt

where xt is a process with covariance function γx(s, t). To identify the model, these are the steps:

1. Run regular regression of yt on zt1, . . . , ztr and retain the residuals

2. Identify an ARMA model for the residuals x̂t following the steps above

3. Run weighted least squares on regression model with autocorrelated errors using model in
step 2

4. Inspect residuals ŵt

4.7.2 Multiplicative Seasonal ARMIA Models

Definition. The pure seasonal ARMA, denoted ARMA(P,Q)s is

ΦP (Bs)xt = ΘQ(Bs)wt

where

ΦP (Bs) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦPB
P s

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + · · · + ΘQB
Qs

are respectively the seasonal autogressive and moving average operators of orders P and Q with
period s.

Similary to an ARMA(p, q) model, this model is causal/invertible only if the roots of ΦP (z)/ ΘQ(z)
lie outside the unit circle. We estimate the orders P and Q with the chart
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This chart can also be used to identify the order of regular ARMA models, albeit without the s.
In general, seasonal and nonseasonal operators are combined into a model ARMA(p, q) × (P,Q)s,
given by

ΦP (Bs)ϕ(B)xt = ΘQ(Bs)θ(B)wt

Definition. A SARIMA model ARIMA(p, d, q) × (P,D,Q)s is given by

ΦP (Bs)ϕ(B)∇D
s ∇dxt = δ + ΘQ(Bs)θ(B)wt

where ∇D
s = (1 −Bs)D .

5 Spectal Analyis and Filtering

Consider a series
xt =

q∑
k=1

[Uk1 cos(2πωkt) + Uk2 sin(2πωkt)]

where Uk1 and Uk2 are uncorrelated with mean 0, variance σ2
k. The ACF of this series is

γx(h) =
q∑

k=1
σ2

k cos(2πωkh)

5.1 Estimation

For any time series sample x1, . . . , xn, if n is odd, then we can write

xt = a0 +
n−1

2∑
j=1

[aj cos(2πtj/n) + bj sin(2πtj/n)]

for t = 1, . . . , n. If n is even, then

xt = a0 +
n
2∑

j=1
[aj cos(2πtj/n) + bj sin(2πtj/n)]

For the coefficients, choose a0 = x̄ and

aj = 2
n

n∑
t=1

xt cos(2πtj/n)
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bj = 2
n

n∑
t=1

xt sin(2πtj/n)

Definition. The scaled periodigram is P (j | n) = a2
j + b2

j .

This function indicates which frequency components are large in magnitude and which are small.
It serves as an estimate of σ2

j corresponding to ωj = j
n .

Definition. The discrete Fourier transform is

d(j | n) = n− 1
2

(
n∑

t=1
xt cos(2πtj/n) − i

n∑
t=1

xt sin(2πtj/n)
)

Rewriting in Euler form,

d(j | n) = n− 1
2

n∑
t=1

xte
−i2πtj/n

The periodogram is

|d(j | n)|2= 1
n

(
n∑

t=1
xt cos(2πtj/n)

)2

+ 1
n

(
n∑

t=1
xt sin(2πtj/n)

)2

Notice that the scaled periodogram is P (j | n) = 4
n |d(j | n)|2.

5.2 The Spectral Density

If {xt}t is a stationary time series with autocovariance γ(h), then there exists a unique monotically
increasing function F (ω) with F (−∞) = F (−1

2) = 0, F (∞) = F (1
2) = γ(0) such that

γ(h) =
∫ 1

2

− 1
2

e2πiωhdF (ω)

If ∑∞
h=−∞|γ(h)|< ∞, then it has the reprsentation

γ(h) =
∫ 1

2

− 1
2

f(ω)e2πiωhdω

as the inverse Fourier transform of the spectral density

f(ω) =
∞∑

h=−∞
γ(h)e−2πiωh,−1

2 ≤ ω ≤ 1
2

The spectral density behaves like any density function:

• f(ω) ≥ 0

• f(ω) = f(−ω)

For h = 0, we have that

γ(0) = Var(xt) =
∫ 1

2

− 1
2

f(ω)dω
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Some properties of the spectral density:

• If f(ω), g(ω) are spectral densities such that

γf (h) =
∫ 1

2

− 1
2

f(ω)e−2πiωhdω =
∫ 1

2

− 1
2

g(ω)e2πiωhdω = γg(h)

then the two spectral densities are equal (i.e. the spectral density is unique)

• If yt = ∑∞
j=−∞ ajxt−j where ∑∞

j=−∞|aj |< ∞, let A(ω) = ∑∞
j=−∞ aje

−2πiωj . Then fy(ω) =
|A(ω)|2fx(ω)

• If xt is ARMA(p, q) with autoregressive operator ϕ(z) and moving average operator θ(z), then

fx(ω) = σ2
w

|θ(e−2πiω)|2
|ϕ(e−2πiω)|2

We can relate this to the periodogram. Let ωj = j
n . Then the DFT is

d(ωj) = n− 1
2

n∑
t=1

xte
−2πiωjt

Solve for xt using the inverse DFT

xt = n− 1
2

n−1∑
j=0

d(ωj)e2πiωjt

The periodogram is I(ωj) = |d(ωj)|2 and is the sample version of f(ωj). Thus the periodogram can
be viewed as the sample spectral density.
If xt = ∑∞

j=−∞ ψjwt−j with ∑∞
j=−∞|ψj |< ∞ where wt ∼ wn(0, σ2

w), then for any collection of m
distinct frequencies ωj ∈ (0, 1

2) with ωj:n → ωj , then

2I(ωj:n)
f(ωj)

d→ χ2
2

provided f(ωj) for j = 1, . . . ,m. Thus, a 100(1 − α)% confidence interval for f(ω) is

2I(ωj:n)
χ2

2(1 − α
2 ) ≤ f(ω) ≤ 2I(ωj:n)

χ2
2(α

2 )

5.3 Non-parametric estimation

For ω∗ = ωj + k
n , let

B =
{
ω∗ : ωj − m

n
≤ ω∗ ≤ ωj + m

n

}
where L = 2m+ 1 is odd, chosen such that

f

(
ωj + k

n

)
≈ f(ω)
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for −m ≤ k ≤ m.

Definition. The smoothed periodogram is defined as

f̄(ω) = 1
L

m∑
k=−m

I

(
ωj + k

n

)

This function satisfies
2Lf̄(ω)
f(ω) ∼ χ2

2L

so a 100(1 − α)%confidence interval of f(ω) is

2Lf̄(ω)
χ2

2L(1 − α
2 ) ≤ f(ω) ≤ 2Lf̄(ω)

χ2
2L(α

2 )

Definition. A parametric spectral estimator is obtained by fitting an AR(p) where the order p is
determined by AIC. If ϕ̂1, . . . , ϕ̂p and σ2

w are the fitted AR(p) to xt, then

f̂x(ω) = σ2
w

|ϕ̂(e−2πiω)|2

where ϕ̂(z) = 1 −
∑p

j=1 ϕ̂jz
j .

A 100(1 − α)% confidence interval of fx(ω) is

f̂x(ω)
1 + Czα/2

≤ fx(ω) ≤ f̂x(ω)
1 − Czα/2

where C =
√

2p
n and zα/2 is the α/2 quantile of N (0, 1).

5.4 Multiple series and cross-spectra

The cross-covariance of jointly stationary xt and yt has the representation

γxy(h) =
∫ 1

2

− 1
2

fxy(ω)e2πiωhdω

for h = 0,±1,±2, . . . where fxy(ω) is the cross-spectrum defined as

fxy(ω) =
∞∑

h=−∞
γxy(h)e−2πiωh

We can rewrite fxy(ω) in polar form:

fxy(ω) =
∞∑

h=−∞
γxy(h) cos(2πωh) − i

∞∑
h=−∞

γxy(h) sin(2πωh)

Since γxy(h) = γyx(−h), then fxy(ω) = f∗
yx(ω) where ∗ denotes the conjugate of a complex number.
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Definition. The squared coherence function is

ρ2
yx = |fyx(ω)|2

f2
xx(ω)f2

yy(ω)
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