STA457 Notes

Ian Zhang

1 Characteristics of Time Series

Definition (Time series). A time series is a set of observations x_t , each recorded at time t.

If the set of times T_0 is discrete, then the time series is discrete.

Definition (White noise). White noise is a time series $\{w_t\}$ where the w_t are uncorrelated and $E(w_t) = 0$, $\operatorname{Var}(w_t) = \sigma_w^2 < \infty$. We denote white noise by $w_t \sim wn(0, \sigma_w^2)$.

Some examples of time series are

• Moving average: used to "smooth" a series

$$v_t = \frac{1}{3}(w_{t-1} + w_t + w_{t+1})$$

is a moving average of order 3

• Autoregressive model: the output variable of an autoregressive model depends on past values of the series, for example

$$x_t = x_{t-1} = 0.9x_{t-2} + w_t$$

where w_t is white noise

• Random walk with drift:

$$x_t = \delta + x_{t-1} + w_t$$

with initial condition $x_0 = 0$, δ is the drift, $w_t \sim wn(0, \sigma_w^2)$.

Definition (Autocovariance function). The autocovariance function of a time series x_t is defined as

$$\gamma_x(s,t) = \operatorname{Cov}(x_s, x_t)$$

If $U = \sum_{i=1}^{n} a_i X_i$ and $V = \sum_{j=1}^{m} b_j Y_j$, then

$$\operatorname{Cov}(U, V) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, Y_j)$$

Definition (Autocorrelation function (ACF)). The ACF of a time series x_t is

$$\rho_x(s,t) = \frac{\gamma_x(s,t)}{\sqrt{\gamma_x(s,s)\gamma_x(t,t)}}$$

We can also look at the covariance and correlation functions of two time series x_t and y_t .

Definition (Cross-covariance function). The cross-covariance function of x_t and y_t is

$$\gamma_{xy}(s,t) = \operatorname{Cov}(x_s, y_t)$$

Definition (Cross-correlation function (CCF)). The CCF of x_t and y_t is

$$\rho_{xy}(s,t) = \frac{\gamma_{xy}(s,t)}{\sqrt{\gamma_x(s,s)\gamma_y(t,t)}}$$

1.1 Stationary Time Series

Definition (Weakly staionary time series). A time series w_t is weakly stationary if the following hold:

- (i) the mean function, μ_t , is constant and independent of t
- (ii) the autocovariance function, $\gamma_x(s, t)$, depends on s and t only through their absolute difference |s-t|

We let stationary mean weakly stationary.

For autocovariance function, we can let s = t + h, so $\gamma_x(s,t) = \gamma_x(h)$. If x_t is stationary, then $\gamma_x(h) = \phi(|h|)$ where ϕ is some function of |h|. In this form, the ACF of a stationary time series is

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

1.1.1 Jointly Stationary Time Series

Definition (Jointly stationary). Two time series x_t and y_t are jointly stationary if x_t and y_t are each respectively stationary and the cross-covariance function $\gamma_{xy}(h) = \text{Cov}(x_{t+h}, y_t)$ is a function only of lag h.

Definition (CCF of jointly stationary). The CCF of jointly stationary time series x_t and y_t is

$$\rho_{xy}(h) = \frac{\gamma_{xy}(h)}{\sqrt{\gamma_x(0)\gamma_y(0)}}$$

1.2 Estimation of Correlation

If a time series is stationary, then its mean is a constant μ , thus we can estimate it by the sample mean

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

The variance of sample mean is

$$\operatorname{Var}(\bar{x}) = \operatorname{Var}\left(\frac{1}{n}\sum_{t=1}^{n} x_{t}\right)$$
$$= \frac{1}{n^{2}}\operatorname{Cov}\left(\sum_{t=1}^{n} x_{t}, \sum_{s=1}^{n} x_{s}\right)$$
$$= \frac{1}{n}\sum_{h=-n}^{n} \left(1 - \frac{|h|}{n}\right)\gamma_{x}(h)$$

The sample autocovariance is

$$\hat{\gamma}_x(h) = \frac{1}{n} \sum_{t=1}^{n=h} (x_{t+h} - \bar{x})(x_t - \bar{x})$$

with $\hat{\gamma}_x(h) = \hat{\gamma}_x(-h)$ for $h = 0, 1, \dots, n-1$. The sample ACF is thus

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

2 Time Series Regression

Consider the MLR model

$$x_t = \beta_0 + \beta_1 z_{t1} + \dots + \beta_q z_{tq} + w_t$$

where $w_t \sim \mathcal{N}(0, \sigma_w^2)$ for $t = 1, \ldots, n$. Let $z_t = (1, z_{t1}, \ldots, z_{tq})^T$, $\beta = (\beta_0, \beta_1, \ldots, \beta_q)^T$, thus we can rewrite the model as

$$x_t = \beta^T z_t + w_t$$

2.1 Ordinary Least Squares Estimation

OLS estimation finds $\hat{\beta}$ that minimizes

$$Q = \sum_{t=1}^{n} w_t^2 = \sum_{t=1}^{n} (x_t - \beta^T z_t)^2$$

If the matrix $\sum_{t=1}^{n} z_t z_t^T$ is non-singular, then the LSE of β is

$$\hat{\beta} = \left(\sum_{t=1}^{n} z_t z_t^T\right)^{-1} \sum_{t=1}^{n} z_t x_t$$

Some properties of $\hat{\beta}$ are

- $E(\hat{\beta}) = \beta$
- $\hat{\beta} \sim \mathcal{N}_p(\beta, \sigma_w^2 C)$ where $p = q + 1, C = \left(\sum_{t=1}^n z_t z_t^T\right)^{-1}$

If $\hat{\sigma}_w^2$ is unknown, we can estimate using

$$s_w^2 = MSE = \frac{SSE}{n-p}$$

where

$$SSE = \sum_{t=0}^{n} (x_t - \hat{\beta}^T z_t)^2$$

There are also a few tests we can consider. If we want to test each β_i individually in H_0 : $\beta_i = 0$, then consider the test statistic

$$t = \frac{\hat{\beta}_i - \beta_i}{s_w \sqrt{c_{ii}}} \sim t_{n-p}$$

where c_{ii} is the *i*th element on the diagonal of C.

If we want to test whether only a subset of r < q independent variables, $z_{t,1:r} = \{z_{t1}, \ldots, z_{tr}\}$ is influencing x_t (i.e.: $\beta_{r+1}, \ldots, \beta_q = 0$), we use the test statistic

$$F = \frac{(SSE_r - SSE)/(q-r)}{SSE/(n-p)} = \frac{SSR/(q-r)}{SSE/(n-p)} = \frac{MSR}{MSE} \sim F_{n-p}^{q-r}$$

We reject at level α if $F_c > F_{n-p}^{q-r}(\alpha)$ where F_c is the value of test statistic under H_0 .

Suppose we have a model with k coefficients (smaller model). Then, the maximum likelihood estimator for σ_k^2 is

$$\hat{\sigma}_k^2 = \frac{SSE(k)}{n}$$

where SSE(K) is the SSE under the smaller model. Define Akaike's Information Criteria (AIC) by

$$AIC = \log(\hat{\sigma}_k^2) + \frac{n+2k}{n}$$

The value of k yielding the smallest AIC indicates the best model.

3 Exploratory Data Analysis

Definition. The trend stationary model can be written as

$$x_t = \mu_t + y_t$$

where μ_t is the observed trend and y_t is a stationary process.

Denote the first difference by

$$\nabla x_t = x_t - x_{t-1}$$

Definition (Backshift operator). The backshift operator is

$$Bx_t = x_{t-1}$$

We can extend this definition to powers: since $Bx_{t-1} = x_{t-2}$ but $x_{t-1} = Bx_t$, then we have

 $B^2 x_t = x_{t-2}$. By induction, we have $B^k x_t = x_{t-k}$.

Definition (Differences). Differences of order d are

$$\nabla^d = (1 - B)^d$$

4 ARIMA Models

4.1 AR(p) Models

Definition (AR(p) model). An autoregressive model of order p, denoted AR(p), is of the form

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$$

where x_t is stationary, $w_t \sim wn(0, \sigma_w^2), \phi_1, \ldots, \phi_p$ are constants with $\phi_p \neq 0$.

If the mean μ of x_t is non-zero, then we can replace x_t with $x_t - \mu$, so

$$x_t - \mu = \phi_1(x_{t-1} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + w_t$$
$$\iff x_t = \alpha + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t$$

where $\alpha = \mu(1 - \phi_1 - \dots - \phi_p)$. Using the backshift operator,

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) x_t = w_t \implies \phi(B) x_t = w_t$$

where $\phi_B = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p).$

Proposition. Let $x_t = \phi x_{t-1} + w_t$ be an AR(1) process where $|\phi| < 1$ and $\sup_t \operatorname{Var}(x_t) < \infty$. Then

- $x_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}$. That is, x_t is a linear process
- The autovariance function $\gamma(h)$ is

$$\gamma(h) = \frac{\sigma_w^2 \phi^h}{1 - \phi^2}$$

• The autocorrelation function is

$$\rho(h) = \phi^h$$

Proof. To show x_t is a linear process, by recursion we have

$$x_t = \phi x_{t-1} + w_t$$

= $\phi(\phi x_{t-2} + w_{t-1}) + w_t$
= \cdots
= $\phi^k x_{t-k} + \sum_{j=0}^{k-1} \phi^j w_{t-j}$

and so on.

For the autocovariance,

$$\gamma(h) = \operatorname{Cov}(x_{t+h}, x_t)$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \phi^i \phi^j \operatorname{Cov}(w_{t+h-i}, w_{t-j})$$

$$= \sigma_w^2 \sum_{j=0}^{\infty} \phi^{j+h} \phi^j$$

$$= \sigma_w^2 \phi^2 \sum_{j=0}^{\infty} \phi^{2j}$$

$$= \frac{\sigma_w^2 \phi^h}{1 - \phi^2}$$

since $|\phi| < 1$

For the ACF, since x_t is stationary and $\sup_t \operatorname{Var}(x_t) < \infty$, then

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \frac{\frac{\sigma_w^2 \phi^h}{1 - \phi^2}}{\frac{\sigma_w^2}{1 - \phi^2}} = \phi^h$$

as required.

4.1.1 Explosive Models and Causality

Consider the simple walk $x_t = x_{t-1} + w_t$, $w_t \sim w_n(0, \sigma_w^2)$. Since

$$\gamma(s,t) = \min\{s,t\}\sigma_w^2$$

 x_t is not stationary.

An AR(1) process $x_t = \phi x_{t-1} + w_t$ with $|\phi| > 1$ is *explosive* since its values will increase quickly. Since $|\phi|^{-1} < 1$, this suggests the stationary future dependent AR(1) model

$$x_t = -\sum_{j=1}^{\infty} \phi^{-j} w_{t+j}$$

4.2 MA(q) Models

Definition (MA(q) models). The moving average model of order q, MA(q), is

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

where $w_t \sim wn(0, \sigma_w^2), \theta_1, \ldots, \theta_q$ are constants where $\theta_q \neq 0$.

We can rewrite $x_t = \theta(B)w_t$ where $\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$ is the moving average operator.

4.2.1 Invertibility

If $|\theta| < 1$, then MA(1) as $w_t = -\theta w_{t-1}$ can be written as

$$w_t = \sum_{j=0}^{\infty} (-\theta)^j x_{t-j}$$

4.3 $\mathbf{ARMA}(p,q)$ models

Definition. A time series $\{x_t : t = 0, \pm 1, \pm 2, ...\}$ is ARMA(p,q) if it's stationary and

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$

with $\phi_p, \theta_q \neq 0, \ \sigma_w^2 > 0.$

If x_t has nonzero mean μ , then set $\alpha = \mu(1 - \phi_1 - \phi_2 - \cdots - \phi_p)$ and write the model as

$$x_t = \alpha + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$

where $w_t \sim wn(0, \sigma_w^2)$.

4.3.1 Parameter redundancy

Consider $x_t = 0.5x_{t-1} - 0.5w_{t-1} + w_t$, which looks ARMA(1,1). However, this is equivalent to

$$(1 - 0.5B)x_t = (1 - 0.5B)w_t \iff x_t = w_t$$

so x_t is just white noise. This is due to paramter redundancy.

Definition. The AR and MA polynomials are respectively defined as

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p, \phi_p \neq 0$$

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q, \theta_q \neq 0$$

where $z \in \mathbb{C}$.

4.4 Causality and Invertibility

Definition (Causal model). An ARMA(p,q) model is causal if $\{x_t : t = 0, \pm 1, \pm 2, ...\}$ can be written as a one-sided linear process:

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j} = \psi(B) w_t$$

where $\psi(B) := \sum_{j=0}^{\infty} \psi_j B^j$, $\sum_{j=0}^{\infty} |\psi_j| < \infty$. We set $\psi_0 = 1$.

Ian Zhang

Definition (Invertible model). An ARMA(p,q) model is invertible if $\{x_t : t = 0, \pm 1, \pm 2, \ldots\}$ can be written as

$$\pi(B)x_t = \sum_{j=0}^{\infty} \pi_j x_{t-j} = w_t$$

where $\pi(B) = \sum_{j=0}^{\infty} \pi_j B^j$, $\sum_{j=0}^{\infty} |\pi_j| < \infty$. Set $\pi_0 = 1$.

Proposition. An ARMA(p,q) model is causal iff $\phi(z) \neq 0$ for $|z| \leq 1$. The coefficients ψ_j of the linear process can be determined by solving

$$\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\theta(z)}{\phi(z)}, |z| \le 1$$

An ARMA(p,q) process is causal only when the roots of $\phi(z)$ lie outside the unit circle (i.e.: $\phi(z) = 0$ only if |z| > 1).

Proposition. An ARMA(p,q) model is invertible iff $\theta(z) \neq 0$ for $|z| \leq 1$. The coefficients π_j can be solved through

$$\pi(z) = \sum_{j=0}^{\infty} \pi_j z^j = \frac{\phi(z)}{\theta(z)}, |z| \le 1$$

An ARMA(p,q) process is invertible only when roots of $\theta(z)$ lie outside unit circle (i.e.: $\theta(z) = 0$ only if |z| > 1).

4.4.1 Partial ACF

For a MA(q) model, the ACF is 0 for lag values greater than h. Since $\theta_q \neq 0$, then the ACF will not be 0 at lag q, thus we can use this to identify MA(q) models. For AR models, however, use the partial ACF (PACF) to identify.

Definition. Suppose X, Y and Z are random variables. By regression X on Z to obtain \hat{X} and Y on Z to obtain \hat{Y} , the PACF of X and Y given Z is

$$\rho_{X,Y|Z} = \operatorname{Corr}(X - \hat{X}, Y - \hat{Y})$$

Let x_t be stationary with mean 0. For $h \ge 2$, let \hat{x}_{t+h} denote the regression of x_{t+h} on $\{x_{t+h-1}, x_{t+h-2}, \dots, x_{t+1}\}$:

$$\hat{x}_{t+h} = \beta_1 x_{t+h-1} + \beta_2 x_{t+h-2} + \dots + \beta_{h-1} x_{t+1}$$

Let \hat{x}_t denote the regression of x_t on $\{x_{t+1}, \ldots, x_{t+h-1}\}$:

$$\hat{x}_t = \beta_1 x_{t+1} + \dots + \beta_{h-1} x_{t+h-1}$$

Since x_t is stationary, then all the β_k are the same in both regressions (i.e.: $\beta_k = \beta'_k$). So, the PACF of x_t , denoted ϕ_{hh} , is

$$\phi_{hh} = \operatorname{Corr}(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t)$$

with $\phi_{11} = \text{Corr}(x_t + 1, x_t) = \rho(1).$

The PACF represents the correlation between x_{t+h} and x_t with linear dependence removed.

4.5 Forecasting

<u>Goal</u>: To predict future values of a time series x_{n+m} for m = 1, 2, ... based on colleted data $x_{1:n} = \{x_1, \ldots, x_n\}.$

• For our purposes, assume a stationary x_t

Definition. The minimum MSE predictor of x_{n+m} is

$$x_{n+m}^n = E(x_{n+m} \mid x_{1:n})$$

since conditional expectation minimizes $E[x_{n+m} - g(x_{1:n})]^2$ over all functions g of $x_{1:n}$.

• For our purposes, we only consider linear predictors:

$$x_{n+m}^n = \alpha_0 + \sum_{k=1}^n \alpha_k x_k$$

This is called the best linear predictor (BLP).

Given data x_1, \ldots, x_n , the BLP coefficients in

$$x_{n+m}^n = \alpha_0 + \sum_{k=1}^{\infty} \alpha_k x_k, m \ge 1$$

are found by solving

$$E[(x_{n+m} - x_{n+m}^n)x_k] = 0$$

for all k = 0, 1, ..., n. We set $x_0 = 1$.

4.5.1 Prediction Error

Definition. The mean squared *m*-step-ahead prediction error is

$$P_{m+n}^{n} = E[x_{n+m} - x_{n+m}^{n}]^{2}$$

We use prediction intervals to assess precision of forecasts. These intervals are given by

$$x_{n+m}^n \pm C_{\alpha/2} \sqrt{P_{n+m}^n}$$

4.6 Estimation

Assume observations x_1, \ldots, x_n are from a causal and invertible Gaussian ARMA(p, q) model. The goal is to estimate the parameters of the model and σ_w^2 .

Consider an AR(p) $x_t = \phi_1 x_{t-1} + \cdots + \phi_p x_{t-p} + w_t$. The Yule-Walker equations are

$$\gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2) + \dots + \phi_p \gamma(h-p)$$

$$\sigma_w^2 = \gamma(0) - \phi_1 \gamma(1) - \dots - \phi_p \gamma(p)$$

In matrix notation,

$$\Gamma_p \phi = \gamma_p \qquad \sigma_w^2 = \phi(0) - \phi' \gamma_p$$

where $\Gamma_p = (\gamma(k-j))_{j,k=1}^p$ is a $p \times p$ matrix and $\phi = (\phi_1, \ldots, \phi_p)^T$ and $\gamma_p = (\gamma(1), \ldots, \gamma(p))^T$. We estimate using Method of Moments:

$$\hat{\phi} = \hat{\Gamma}_p^{-1} \hat{\gamma}(h)$$
 $\hat{\sigma}_w^2 = \hat{\gamma}(0) - \hat{\gamma}_p^T \hat{\Gamma}_p^{-1} \hat{\gamma}_p$

We can also use the sample ACF:

$$\hat{\phi} = \hat{R}_p^{-1} \hat{\rho}_p \qquad \hat{\sigma}_w^2 = \hat{\gamma}(0) [1 - \hat{\rho}_p^T \hat{R}_p^{-1} \hat{\rho}_p]$$

The asymptotic behaviour of Yule-Walker estimators for a causal AR(p) is

$$\sqrt{n}(\hat{\phi} - \phi) \xrightarrow{d} \mathcal{N}(0, \sigma_w^2 \Gamma_p^{-1})$$
$$\hat{\sigma}_w^2 \xrightarrow{p} \sigma_w^2$$

So, the PACF satisfies

$$\sqrt{n}\hat{\phi}_{hh} \stackrel{d}{\to} \mathcal{N}(0,1)$$

for h > p.

4.7 ARIMA Models

Definition. A process x_t is ARIMA(p, d, q) if

$$\nabla^d x_t = (1-B)^d x_t$$

is ARMA(p,q). In general,

$$\phi(B)(1-B)^d x_t = \theta(B)w_t$$

If $E(\nabla^d x_t) = \mu$, then

$$\phi(B)(1-B)^d x_t = \delta + \theta(B)w_t$$

where $\delta = \mu (1 - \phi_1 - \dots - \phi_p).$

4.7.1 Fitting ARIMA Models

Steps:

1. Plot the data

- 2. Transform the data if needed
- 3. Identifying dependence orders of model from ACF/PACF
- 4. Parameter estimation
- 5. Diagnostics
 - Standardized residuals computed by

$$e_{t} = \frac{x_{t} - \hat{x}_{t}^{t-1}}{\sqrt{\hat{P}_{t}^{t-1}}}$$

where \hat{x}_t^{t-1} is the one-step-ahead prediction of x_t based on the fitted model and \hat{P}_t^{t-1} is the prediction error

6. Model choice

For regression with autocorrelated errors, the model looks like

$$y_t = \sum_{j=1}^r \beta_j z_{tj} + x_t$$

where x_t is a process with covariance function $\gamma_x(s,t)$. To identify the model, these are the steps:

- 1. Run regular regression of y_t on z_{t1}, \ldots, z_{tr} and retain the residuals
- 2. Identify an ARMA model for the residuals \hat{x}_t following the steps above
- 3. Run weighted least squares on regression model with autocorrelated errors using model in step 2
- 4. Inspect residuals \hat{w}_t

4.7.2 Multiplicative Seasonal ARMIA Models

Definition. The pure seasonal ARMA, denoted $ARMA(P,Q)_s$ is

$$\Phi_P(B^s)x_t = \Theta_Q(B^s)w_t$$

where

$$\Phi_P(B^s) = 1 - \Phi_1 B^s - \Phi_2 B^{2s} - \dots - \Phi_P B^{Ps}$$

$$\Theta_Q(B^s) = 1 + \Theta_1 B^s + \Theta_2 B^{2s} + \dots + \Theta_Q B^{Qs}$$

are respectively the seasonal autogressive and moving average operators of orders P and Q with period s.

Similary to an ARMA(p, q) model, this model is causal/invertible only if the roots of $\Phi_P(z)/\Theta_Q(z)$ lie outside the unit circle. We estimate the orders P and Q with the chart

	$\operatorname{AR}(P)_s$	$\operatorname{MA}(Q)_s$	$ARMA(P,Q)_s$
ACF*	Tails off at lags ks ,	Cuts off after	Tails off at
	$k=1,2,\cdot\cdot\cdot,$	lag Qs	lags ks
PACF**	Cuts off after	Tails off at lags ks	Tails off
	lag Ps	$k=1,2,\cdot\cdot\cdot,$	lags ks

This chart can also be used to identify the order of regular ARMA models, albeit without the s. In general, seasonal and nonseasonal operators are combined into a model $\text{ARMA}(p,q) \times (P,Q)_s$, given by

$$\Phi_P(B^s)\phi(B)x_t = \Theta_Q(B^s)\theta(B)w_t$$

Definition. A SARIMA model $\operatorname{ARIMA}(p, d, q) \times (P, D, Q)_s$ is given by

$$\Phi_P(B^s)\phi(B)\nabla^D_s\nabla_d x_t = \delta + \Theta_Q(B^s)\theta(B)w_t$$

where $\nabla^D_s = (1-B^s)^D$.

5 Spectal Analyis and Filtering

Consider a series

$$x_{t} = \sum_{k=1}^{q} [U_{k1} \cos(2\pi\omega_{k}t) + U_{k2} \sin(2\pi\omega_{k}t)]$$

where U_{k1} and U_{k2} are uncorrelated with mean 0, variance σ_k^2 . The ACF of this series is

$$\gamma_x(h) = \sum_{k=1}^q \sigma_k^2 \cos(2\pi\omega_k h)$$

5.1 Estimation

For any time series sample x_1, \ldots, x_n , if n is odd, then we can write

$$x_t = a_0 + \sum_{j=1}^{\frac{n-1}{2}} [a_j \cos(2\pi t j/n) + b_j \sin(2\pi t j/n)]$$

for $t = 1, \ldots, n$. If n is even, then

$$x_t = a_0 + \sum_{j=1}^{\frac{n}{2}} [a_j \cos(2\pi t j/n) + b_j \sin(2\pi t j/n)]$$

For the coefficients, choose $a_0 = \bar{x}$ and

$$a_j = \frac{2}{n} \sum_{t=1}^n x_t \cos(2\pi t j/n)$$

$$b_j = \frac{2}{n} \sum_{t=1}^n x_t \sin(2\pi t j/n)$$

Definition. The scaled periodigram is $P(j \mid n) = a_j^2 + b_j^2$.

This function indicates which frequency components are large in magnitude and which are small. It serves as an estimate of σ_j^2 corresponding to $\omega_j = \frac{j}{n}$.

Definition. The discrete Fourier transform is

$$d(j \mid n) = n^{-\frac{1}{2}} \left(\sum_{t=1}^{n} x_t \cos(2\pi t j/n) - i \sum_{t=1}^{n} x_t \sin(2\pi t j/n) \right)$$

Rewriting in Euler form,

$$d(j \mid n) = n^{-\frac{1}{2}} \sum_{t=1}^{n} x_t e^{-i2\pi t j/n}$$

The periodogram is

$$|d(j \mid n)|^{2} = \frac{1}{n} \left(\sum_{t=1}^{n} x_{t} \cos(2\pi t j/n) \right)^{2} + \frac{1}{n} \left(\sum_{t=1}^{n} x_{t} \sin(2\pi t j/n) \right)^{2}$$

Notice that the scaled periodogram is $P(j \mid n) = \frac{4}{n} |d(j \mid n)|^2$.

5.2 The Spectral Density

If $\{x_t\}_t$ is a stationary time series with autocovariance $\gamma(h)$, then there exists a unique monotically increasing function $F(\omega)$ with $F(-\infty) = F(-\frac{1}{2}) = 0$, $F(\infty) = F(\frac{1}{2}) = \gamma(0)$ such that

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega h} dF(\omega)$$

If $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$, then it has the representation

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(\omega) e^{2\pi i \omega h} d\omega$$

as the *inverse Fourier transform* of the spectral density

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega h}, -\frac{1}{2} \le \omega \le \frac{1}{2}$$

The spectral density behaves like any density function:

- $f(\omega) \ge 0$
- $f(\omega) = f(-\omega)$

For h = 0, we have that

$$\gamma(0) = \operatorname{Var}(x_t) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(\omega) d\omega$$

Some properties of the spectral density:

• If $f(\omega), g(\omega)$ are spectral densities such that

$$\gamma_f(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(\omega) e^{-2\pi i \omega h} d\omega = \int_{-\frac{1}{2}}^{\frac{1}{2}} g(\omega) e^{2\pi i \omega h} d\omega = \gamma_g(h)$$

then the two spectral densities are equal (i.e. the spectral density is unique)

- If $y_t = \sum_{j=-\infty}^{\infty} a_j x_{t-j}$ where $\sum_{j=-\infty}^{\infty} |a_j| < \infty$, let $A(\omega) = \sum_{j=-\infty}^{\infty} a_j e^{-2\pi i \omega j}$. Then $f_y(\omega) = |A(\omega)|^2 f_x(\omega)$
- If x_t is ARMA(p,q) with autoregressive operator $\phi(z)$ and moving average operator $\theta(z)$, then

$$f_x(\omega) = \sigma_w^2 \frac{|\theta(e^{-2\pi i\omega})|^2}{|\phi(e^{-2\pi i\omega})|^2}$$

We can relate this to the periodogram. Let $\omega_j = \frac{j}{n}$. Then the DFT is

$$d(\omega_j) = n^{-\frac{1}{2}} \sum_{t=1}^n x_t e^{-2\pi i \omega_j t}$$

Solve for x_t using the inverse DFT

$$x_t = n^{-\frac{1}{2}} \sum_{j=0}^{n-1} d(\omega_j) e^{2\pi i \omega_j t}$$

The periodogram is $I(\omega_j) = |d(\omega_j)|^2$ and is the sample version of $f(\omega_j)$. Thus the periodogram can be viewed as the sample spectral density.

If $x_t = \sum_{j=-\infty}^{\infty} \psi_j w_{t-j}$ with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$ where $w_t \sim wn(0, \sigma_w^2)$, then for any collection of m distinct frequencies $\omega_j \in (0, \frac{1}{2})$ with $\omega_{j:n} \to \omega_j$, then

$$\frac{2I(\omega_{j:n})}{f(\omega_j)} \stackrel{d}{\to} \chi_2^2$$

provided $f(\omega_j)$ for $j = 1, \ldots, m$. Thus, a $100(1 - \alpha)\%$ confidence interval for $f(\omega)$ is

$$\frac{2I(\omega_{j:n})}{\chi_2^2(1-\frac{\alpha}{2})} \le f(\omega) \le \frac{2I(\omega_{j:n})}{\chi_2^2(\frac{\alpha}{2})}$$

5.3 Non-parametric estimation

For $\omega^* = \omega_j + \frac{k}{n}$, let

$$\mathbb{B} = \left\{ \omega^* : \omega_j - \frac{m}{n} \le \omega^* \le \omega_j + \frac{m}{n} \right\}$$

where L = 2m + 1 is odd, chosen such that

$$f\left(\omega_j + \frac{k}{n}\right) \approx f(\omega)$$

for $-m \leq k \leq m$.

Definition. The smoothed periodogram is defined as

$$\bar{f}(\omega) = \frac{1}{L} \sum_{k=-m}^{m} I\left(\omega_j + \frac{k}{n}\right)$$

This function satisfies

$$\frac{2Lf(\omega)}{f(\omega)} \sim \chi^2_{2L}$$

so a $100(1-\alpha)$ % confidence interval of $f(\omega)$ is

$$\frac{2L\bar{f}(\omega)}{\chi^2_{2L}(1-\frac{\alpha}{2})} \le f(\omega) \le \frac{2L\bar{f}(\omega)}{\chi^2_{2L}(\frac{\alpha}{2})}$$

Definition. A parametric spectral estimator is obtained by fitting an AR(p) where the order p is determined by AIC. If $\hat{\phi}_1, \ldots, \hat{\phi}_p$ and σ_w^2 are the fitted AR(p) to x_t , then

$$\hat{f}_x(\omega) = \frac{\sigma_w^2}{|\hat{\phi}(e^{-2\pi i\omega})|^2}$$

where $\hat{\phi}(z) = 1 - \sum_{j=1}^{p} \hat{\phi}_j z^j$.

A $100(1-\alpha)\%$ confidence interval of $f_x(\omega)$ is

$$\frac{\hat{f}_x(\omega)}{1 + Cz_{\alpha/2}} \le f_x(\omega) \le \frac{\hat{f}_x(\omega)}{1 - Cz_{\alpha/2}}$$

where $C = \sqrt{\frac{2p}{n}}$ and $z_{\alpha/2}$ is the $\alpha/2$ quantile of $\mathcal{N}(0, 1)$.

5.4 Multiple series and cross-spectra

The cross-covariance of jointly stationary x_t and y_t has the representation

$$\gamma_{xy}(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f_{xy}(\omega) e^{2\pi i\omega h} d\omega$$

for $h = 0, \pm 1, \pm 2, \ldots$ where $f_{xy}(\omega)$ is the cross-spectrum defined as

$$f_{xy}(\omega) = \sum_{h=-\infty}^{\infty} \gamma_{xy}(h) e^{-2\pi i \omega h}$$

We can rewrite $f_{xy}(\omega)$ in polar form:

$$f_{xy}(\omega) = \sum_{h=-\infty}^{\infty} \gamma_{xy}(h) \cos(2\pi\omega h) - i \sum_{h=-\infty}^{\infty} \gamma_{xy}(h) \sin(2\pi\omega h)$$

Since $\gamma_{xy}(h) = \gamma_{yx}(-h)$, then $f_{xy}(\omega) = f_{yx}^*(\omega)$ where * denotes the conjugate of a complex number.

Definition. The squared coherence function is

$$\rho_{yx}^2 = \frac{|f_{yx}(\omega)|^2}{f_{xx}^2(\omega)f_{yy}^2(\omega)}$$