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1 Markov Chains

1.1 Markov Chain Definitions and Examples

Definition. A discrete-time, discrete-state, time-homogeneous Markov chain has 3 components:

1. State space S (finite or countably infinite)

2. Initial distribution (νi)i∈S where νi = P (X0 = i)

3. Transitition probabilities (pij)i,j∈S where

pij = P (Xt+1 = j | Xt = i) = P (Xt+1 = j, Xt = i)
P (Xt = i)

We now look at the most common Markov chains.

Frog Walk

Consider S = {1, . . . , 20}. The Frog Walk is the Markov chain defined over S with initial
probabilities defined as ν20 = 1 and νi = 0 for all i ̸= 20, and transition probabilities pij

defined as

pij =


1
3 if |i − j|≤ 1 or |i − j|= 19

0 otherwise
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By how a Markov chain is structured, we have

P (X0 = i0, X1 = i1, . . . , Xn = in) = P (X0 = i0)P (X1 = ii | X0 = i0)P (X2 = i2 | X1 = i1, X0 = i0)
· · · P (Xn = in | X0 = i0, · · · , Xn−1 = in−1)
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What makes a MC “Markov” is the Markov property:

P (Xj = ij | X0 = i0, · · · , Xj−1 = ij−1) = P (Xj = ij | Xj−1 = ij−1)

In other words, the state of the chain at time t + 1 depends only on the state at time t. This
property implies that

P (X0 = i0, X1 = i1, . . . , Xn = in) = νi0pi0i1pi1i2 · · · pin−1in

Simple Random Walk

Let 0 < p < 1 and suppose we repeatedly gamble $1. Each time, we have a probability p

of winning $1 and a probability 1 − p of losing the dollar. Let Xn represent the net gain
after n bets. In this case, S = Z and the transition probabilities are

pij =


p j = i + 1

1 − p j = i − 1

0 otherwise

0 1 2-1-2· · · · · ·
p p p p p

1 − p 1 − p 1 − p 1 − p 1 − p

p

1 − p

Ehrenfest’s Urn

Suppose we have 2 urns and d balls in total. At each time t, we randomly select one ball
and move it to the other urn. Let Xn be the number of balls in the left side at time n. In
this case, S = {0, . . . , d} and the transition probabilities are

pi,i−1 = i

d
pi,i+1 = d − i

d

1.2 Multi-Step Transitions

Let {Xn} be a Markov chain with state space S, transition probabilities pij , and initial proba-
bilities νi. By the Markov property, we know that

P (X0 = i0, X1 = i1, X2 = i2) = νi0pi0i1pi1i2

By the Law of Total Probability,

P (X0 = i0, X2 = i2) = νi0

∑
i1∈S

pi0i1pi1i2
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and
P (X2 = i2) =

∑
i0∈S
i1∈S

νi0pi0i1pi1i2

Let m = |S|, where m ≤ ∞. Write ν = (ν1, . . . , ) and

P :=


p11 p12 · · ·
p21 p22 · · ·
... . . . ...


where P is a m × m matrix.
Define ν

(2)
i = P (X2 = i). Then ν(2) = νP 2 and so on.

Definition. Let p
(n)
ij = P (Xn = j | X0 = i) for all i, j ∈ S. If νi = 1 and νj = 0 for all j ̸= i,

then νP m is the m-step transition probability from state i. For the new chain, it has transition
matrix P n = (p(n)

ij )i,j∈S .

Chapman-Kolmogorov Equations

(p(m+n)
ij )i,j∈S = P m+n = (p(m)

ij )i,j∈S(p(n)
ij )i,j∈S =

∑
k∈S

p
(m)
ik p

(n)
kj

(p(m+s+n)
ij )i,j∈S = P m+s+n = (p(m)

ij )i,j∈S(p(s)
ij )i,j∈S(p(n)

ij )i,j∈S =
∑
k∈S

∑
l∈S

p
(m)
ik p

(s)
kl p

(n)
lj

The Chapman-Kolmogorov inequality follows:

p
(m+n)
ij ≥ p

(m)
ik p

(n)
jk

for any fixed k ∈ S and
p

(m+s+n)
ij ≥ p

(m)
ik p

(s)
kl p

(n)
lj

Basically, to compute p
(n)
ij , just compute P n and observe the (i, j)th item in the resulting matrix.

1.3 Recurrence and Transcience

Definition. Let N(i) := total number of times for a Markov chain to visit i, so

N(i) =
∞∑

t=1
I(xt = i)

Let fij := P (N(j) ≥ 1 | X0 = i) = Pi(N(j) ≥ 1) be the probability that the Markov chain
visits j eventually, starting from i.

In general, Pi(N(i) ≥ k) = (fii)k since

Pi(N(i) ≥ k) = Pi(N(i) ≥ k | N(i) ≥ k − 1) · Pi(N(i) ≥ k − 1)

Let τ
(k−1)
i be the time step that hits i for the k − 1th time. Then X0 = i, Xτi = i, X

τ
(k−1)
i

= i,
and so on. Let τ be a hitting time for i. The above implies that

(Xτ , Xτ+1, . . .) d= (X0, X1, . . . , )

3
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It follows that

Pi(N(i) ≥ k | N(i) ≥ k − 1) = Pi(τ (k)
i < ∞ | τ

(k−1)
i < ∞)

= Pi(τ (1)
i < ∞)

= fii

By induction, this implies Pi(N(i) ≥ k) = (fii)k.

Corollary. Pi(N(j) ≥ k) = fij(fjj)k−1

Corollary. Ei[N(j)] = ∑∞
k=1 Pi(N(j) ≥ k) =


fij

1−fjj
if fjj < 1

0 otherwise

Definition. A state i of a Markov chain is recurrent if fii = 1. State i is transient if fii < 1.

Corollary. A state i is recurrent if, and only if, Pi(N(i) = ∞) = 1.

Theorem (Recurrent State Theorem). A state i is recurrent if, and only if, ∑∞
n=1 p

(n)
ii = ∞.

Proof.
∞∑

n=1
p

(n)
ii =

∞∑
n=1

Pi(Xn = i) =
∞∑

n=1
Ei[I(Xn = i)]

= Ei

[ ∞∑
n=1

I(Xn = i)
]

by Fubini-Tonelli

= Ei[N(i)]

=

∞ fii = 1
fii

1−fii
fii < 1

■

Lemma (Borel-Cantelli). Let (Ei)∞
i=1 be a sequence of events. If

∞∑
i=1

P (Ei) < ∞, then

P ((Ei)∞
i=1 happens finite times) = 1

Consider the simple random walk. Is state 0 recurrent?

• Need to check
∞∑

n=1
p

(n)
00 = ∞ as per the Recurrent State Theorem

For odd n, p
(n)
00 (obviously). For even n, we have

p
(n)
00 = P

(
n

2 heads and n

2 losses in the first n tosses
)

=
(

n
n
2

)
p

n
2 (1 − p)

n
2

= n![(
n
2
)

!
]2 p

n
2 (1 − p)

n
2
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Sterling’s approximation: If n is large, then n! ≈
(

n
e

)n √
2πn.

Thus,

p
(n)
00 ≈

(
n
e

)n √
2πn[(

n
2e

)n
2

√
πn
]2 p

n
2 (1 − p)

n
2

= [4p(1 − p)]
n
2

√
2

πn

If p = 1
2 , then 4p(1 − p) = 1, so

∞∑
n=1

p
(n)
00 ≈

∑
n=2,4,...

√
2

πn
=
(√

2
π

) ∑
n=2,4,...

n− 1
2 → ∞

so state 0 is recurrent if p = 1
2 .

If p ̸= 1
2 , then 4p(1 − p) < 1, then

∞∑
n=1

p
(n)
00 ≈

∑
n=2,4,...

[4p(1 − p)]
n
2

√
2

πn
<

∑
n=2,4,...

[4p(1 − p)]
n
2 = 4p(1 − p)

1 − 4p(1 − p) < ∞

This means that for the simple random walk, state 0 is recurrent iff p = 1
2 .

f -expansion:
fij = pij +

∑
k∈S
k ̸=j

pikfkj

1.3.1 Gambler’s Ruin

Suppose one starts with initial money amount a ∈ N, and each round, the gain in money is
captured by +1 with probability p

−1 with probability 1 − p

The game stops if either one of the following happens:

1. All money is lost

2. The amount of money reaches c for some c

Let Xt be the amount of money the player has at time t. The state space is S = {0, . . . , c}, the
initial probabilities νa = 1, νi = 0 if i ̸= a. The chain is captured as below:

i i + 1i − 1· · ·10 · · · c − 1 c1
p p p p p p p

1 − p1 − p1 − p1 − p1 − p1 − p1 − p

1

Some of characteristics of the series:

• f00 = fcc = 1, which means states 0 and c are recurrent (obviously since if we start at
either then the game has already ended so the only option is to go back to the same state).
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• fii < 1 for all i ̸= 0, c, which means all the other states are transient

To compute the probability of losing all money given the player starts at state i, we compute
fi0.

fi0 = pi0 +
∑
k∈S
k ̸=0

pikfk0

=

1 − p + pf20 i = 1

(1 − p)f(i−1)0 + pf(i+1)0 i ≥ 2

= (1 − p)f(i−1)0 + pf(i+1)0

Obviously, fc0 = 0 since if the player starts at c, then he’s already won.
Special case: p = 1

2
If this is the case, then

fi0 = 1
2f(i−1)0 + 1

2f(i+1)0 = c − i

c

If p ̸= 1
2 , then

fi0 = (1 − p)f(i−1)0 + pf(i+1)0

However,

f(i+1)0 − f(i−1)0 = 1
p

fi0 + 1 − p

p
f(i−1)0 − fi0

= 1 − p

p

(
fi0 − f(i−1)0

)
= · · ·

=
(1 − p

p

)i

(f10 − f00)

So, given the player starts with a amount of money, then the probability the game ends with
the player have nothing left is

fa0 =


( 1−p

p

)c
−
( 1−p

p

)a( 1−p
p

)c
−1

p ̸= 1
2

c−a
c p = 1

2

1.4 Communicating States and Irreducibility

Definition (Communication). State i communicates with state j if fij > 0 (i.e.: if it’s possible
for the chain to visit j at least once starting from i). If so, then we say i → j.

Definition (Irreducibility). A Markov chain is irreducible if i → j for all i, j ∈ S.

• i ↔ j if i → j and j → i

Note that from above, Gambler’s ruin is obviously reducible since f0c = fc0 = 0.
Fact: If i ↔ k, then i is recurrent iff k is.

Corollary. For an irreducible MC, either

6
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(a) All states are recurrent

(b) All states are transient

Lemma (Sum). If i → k, l → j, and
∞∑

n=1
p

(n)
kl = ∞, then

∞∑
n=1

p
(n)
ij = ∞.

Proof. By definition, we know there exists m and r such that p
(m)
ik > 0 and p

(r)
lj > 0. By the

Chapman-Kolmogorov inequality, we have

p
(m+s+r)
ij ≥ p

(m)
ik p

(s)
kl p

(r)
lj > 0

Since each p
(n)
ij ≥ 0, then

∞∑
n=1

p
(n)
ij ≥

∞∑
n=m+r+1

p
(n)
ij =

∞∑
s=1

p
(m+s+r)
ij ≥ p

(m)
ik p

(r)
lj

∞∑
s=1

p
(s)
kl = ∞

■

Theorem (Finite Space). An irreducible Markov chain on a finite state space always falls into
case (a) of the above corollary.

Proof. Choose any state i. Then

∑
j∈S

∞∑
n=1

p
(n)
ij =

∞∑
n=1

∑
j∈S

p
(n)
ij =

∞∑
n=1

1 = ∞

Since S is finite, there must exist some j ∈ S such that ∑∞
n=1 p

(n)
ij = ∞. ■

Lemma (Hit). Define Hij = {MC hits state i before returning to j}. If j communicates with
i with j ̸= i, then Pj(Hij) > 0.

Lemma (f). If j → i and fjj = 1, then fij = 1.

Proof. We know that Pj(Hij) > 0 by the Hit Lemma. Then

Pj(Hij)Pi(never returns to j) ≤ Pj (never returns to j)

since one way to never return to j is to first visit i then never return to j. But since fjj = 1
and by the Hit Lemma,

1 − fij = Pi(never return to j) = 0

which means fij = 1. ■

Lemma (Infinite Returns). For irreducible MC, if recurrent, then for all i, j ∈ S,

Pi(N(j) = ∞) = 1

If transient, then for all i, j ∈ S,
Pi(N(j) = ∞) = 0

7
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Proof. If recurrent, then fij = fjj = 1 by the f -Lemma. So, for all k,

Pi(N(j) = k) = fij(fjj)k−1 = (1)(1)k−1 = 1

thus Pi(N(j) = ∞) = lim
k→∞

Pi(N(j) = k) = lim
k→∞

1 = 1.
If transient, then

lim
k→∞

Pi(N(j) = k) = lim
k→∞

fij(fjj)k−1 = 0

since fjj < 1. ■

Theorem (Recurrence Equivalences Theorem). If a MC is irreducible, then the following are
equivalent:

1. There exists k, l ∈ S such that
∞∑

n=1
p

(n)
kl = ∞

2. For all i, j ∈ S,
∞∑

n=1
p

(n)
ij = ∞

3. There exists k such that fkk = 1

4. For all i, fii = 1

5. For all i, j, fij = 1

6. There exists k, l such that Pk(N(l) = ∞) = 1

7. For all i, j, Pi(N(j) = ∞) = 1

All equivalences can be proven with the lemmas above. For transience, there’s a similar theorem:

Theorem (Transience Equivalences Theorem). If a MC is irreducible, then the following are
equivalent:

1. For all i, j ∈ S,
∞∑

n=1
p

(n)
ij < ∞

2. There exists i, j such that
∞∑

n=1
p

(n)
ij < ∞

3. For all k, fkk < 1

4. There exists i such that fii < 1

5. There exists i, j such that fij < 1

6. For all k, l, Pk(N(l) = ∞) < 1

7. There exists i, j such that Pi(N(j) = ∞) < 1

Proposition. There exists irreducible MC such that it’s transient but there exists k, l such
that fkl = 1.

8
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Take the simple random walk for example with p > 1
2 . We know that

p
(n)
00 =

0 n ≡ 0 mod 2

≈ (4p(1 − p)) n
2

√
2

πn otherwise

so
∞∑

n=1
p

(n)
00 < ∞.

Fact: If i is transcient, j recurrent, then j ̸→ i.

Proof. Suppose j → i. Then

0 = Pj(never return to i)

≥ Pj(visit i)Pi(not return to j)

However, Pj(visit i) > 0, so Pi(not return to j). Thus, i ↔ j, so since j is recurrent, then so is
i, a contradiction. Thus, j ̸→ i. ■

2 Markov Chain Convergence

2.1 Stationary Distributions

Suppose µ
(n)
j := P (Xn = j) with µ

(n)
j → qj for all states j. Then since

µ
(n+1)
j → qj

µ(n+1) = µ(n)P

we have
q = qP

Definition. If π is a probability distribution on S, then π is stationary for a MC with transition
probabilities (pij) if ∑

i∈S

πipij = πj ∀j ∈ S

If we write π =
[
π1 π2 · · ·

]T
, then πP = π.

For example, take the frog walk and let π be a 1 × 20 vector with 1
20 in all of its entries. Is π a

stationary distribution? For all j ∈ S,
∑
i∈S

πipij = 1
20

(1
3 + 1

3 + 1
3

)
= 1

20 = πj

thus π is stationary.

Definition (Doubly stochastic). If
∑
i∈S

pij = 1 in addition to ∑j∈S pij = 1, then the MC is

doubly stochastic.

9
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Let π be a uniform distribution for a doubly stochastic chain on S, so πi = 1
|S| . Then,

∑
i∈S

πipij = 1
|S|

∑
i∈S

pij = 1
|S|

= πj

Definition (Reversible). A MC is reversible wrt distribution {πi} if πipij = πjpji for all i, j ∈ S.

Proposition. If a chain is reversible wrt π, then π is a stationary distribution.

Proof. Reversibility means πipij = πjpji, thus∑
i∈S

πipij =
∑
i∈S

πjpji = πj(1) = πj

■

Fact: There exists a MC P with stationary distribution π such that P is not reversible wrt π.

M -test

Consider a sequence {xnk}n,k∈N. Suppose lim
n→∞

xnk exists for all k ∈ N, and
∞∑

k=1
sup
n≥1

|xnk|< ∞ .

Then,

lim
n→∞

∞∑
k=1

xnk =
∞∑

k=1
lim

n→∞
xnk

Proposition (Vanishing Probabilities). If lim
n→∞

p
(n)
ij = 0 for all i, j ∈ S, then a stationary

distribution does not exist.

Proof. Suppose π is stationary, so πj =
∑
i∈S

πip
(n)
ij for any n, thus

πj = lim
n→∞

πj = lim
n→∞

∑
i∈S

πip
(n)
ij

Notice that ∑
i∈S

sup
n≥1

|πip
(n)
ij |≤

∑
i∈S

πi = 1 < ∞

so by the M -test,

πj = lim
n→∞

πj = lim
n→∞

∑
i∈S

πip
(n)
ij =

∑
i∈S

lim
n→∞

πip
(n)
ij =

∑
i∈S

0 = 0

which is a contradiction since
∑
j∈S

πj = 0. ■

Lemma (Vanishing). If a MC has some k, l ∈ S such that lim
n→∞

p
(n)
kl = 0, then for all i, j ∈ S

such that k → i and j → l, then lim
n→∞

p
(n)
ij = 0.

Proof. There exists r, s ∈ N such that p
(r)
ki > 0 and p

(s)
jl > 0. By Chapman-Kolmogorov,

p
(r+n+s)
kl ≥ p

(r)
ki p

(n)
ij p

(s)
jl

10
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Thus,

p
(n)
ij ≤

p
(r+n+s)
kl

p
(r)
ki p

(s)
jl

By the assumption, we know that lim
n→∞

p
(r+n+s)
kl

p
(r)
ki p

(s)
jl

= ∞, thus since p
(n)
ij ≥ 0, by the Squeeze

Theorem, lim
n→∞

p
(n)
ij = 0. ■

Corollary. For an irreducible MC, either

(i) lim
n→∞

p
(n)
ij = 0 for all i, j ∈ S (the MC is transient)

(ii) lim
n→∞

p
(n)
ij ̸= 0 for all i, j ∈ S (the MC is recurrent)

Corollary. If an irreducible MC has lim
n→∞

p
(n)
kl = 0 for some k, l ∈ S, then it does not a

stationary distribution.

Proof. By the above corollary, if there exists k, l such that limn→∞ p
(n)
kl = 0, then since the

chain is irreducible, we have limn→∞ p
(n)
ij = 0 for all i, j ∈ S. By the Vanishing Probabilities

proposition, the chain does not have a stationary distribution. ■

2.2 Obstacles to Convergence

Let S = {1, 2}, ν1 = 1, and (pij) =
(

1 0
0 1

)
.

1 21 2

Let π1 = π2 = 1
2 , so {πi} is stationary. However,

lim
n→∞

P (Xn = 1) = 1 ̸= 1
2 = π1

so the chain does not converge to stationarity.

Definition (Period). The period of a state i is the gcd of {n ≥ 1 : p
(n)
ii > 0}. If the period of

every state i is 1, then the MC is aperiodic. Otherwise, it is periodic.

Its entirely possible to have a MC be aperiodic despite all pii = 0. Take S = {1, 2, 3} and
consider the transition probabilities

(pij) =


0 1

2
1
2

1
2 0 1

2
1
2

1
2 0


Clearly, we can go 1 → 2 → 1 or 1 → 2 → 3 → 2 → 1, and so on, so the period of state 1 is
gcd{2, 3, . . .} = 1. Similarly, the period of states 2 and 3 are each 1, so the chain is aperiodic.
However, pii = 0 for all i ∈ S.

• Since gcd{1, . . . , } = 1, then if pii > 0, state i has period 1

11
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• Since gcd{n, n + 1, . . . , } = 1, then if both p
(n)
ii > 0 and p

(n+1)
ii > 0, state i has period 1

Take the frog walk for example. We know that pii = 1
3 for all i, so the chain is aperiodic.

For the simple random walk, we can only return to a state after an even number of moves, thus
the period of each state is 2.

Lemma (Equal Periods). If i ↔ j, then the periods of i and j are equal.

Proof. Let ti and tj be the periods of states i and j respectively. We know there exists r, s ∈ N
such that p

(r)
ij > 0 and p

(s)
ji > 0, thus by Chapman-Kolmogorov,

p
(r+s)
ii ≥ p

(r)
ij p

(s)
ji

thus ti | r + s. Suppose for some n that p
(n)
jj > 0. Then by Chapman-Kolmogorov again,

p
(r+n+s)
ii ≥ p

(r)
ij p

(n)
jj p

(s)
ji

thus ti | r + n + s. Since ti | r + s, then we must have ti | n, so ti is a common divisor of the set
A = {n ≥ 1 : p

(n)
jj > 0}. But since tj = gcd(A), then ti and tj divide each other, which implies

ti = tj . ■

2.3 Markov Chain Convergence Theorem

Theorem (Markov Chain Convergence). If a MC is irreducible, aperiodic, and has a stationary
distribution π, then for all i, j ∈ S,

lim
n→∞

p
(n)
ij = πj

and for any initial distribution {νi},

lim
n→∞

P (Xn = j) = πj

Theorem (Stationary Recurrence). If a MC is irreducible and has a stationary distribution π,
then it’s recurrent.

Proposition. If state i is aperiodic and fii > 0, then there exists some n0(i) ∈ N such that
p

(n)
ii > 0 for all n ≥ n0(i).

Proof. Let A = {n ≥ 1 : p
(n)
ii > 0} ≠ ∅ since fii > 0. If m, n ∈ A, then by Chapman-

Kolmogorov, p
(m+n)
ii ≥ p

(m)
ii p

(n)
ii > 0 thus m + n ∈ A so A satisfies additivity. Citing Bézout’s

Identity completes the proof. ■

Corollary. If a MC is irreducible and aperiodic, then for all i, j ∈ S, there exists some n0(i, j) ∈
N such that for all n ≥ n0(i, j), p

(n)
ij > 0.

Lemma (Markov Forgetting). If a MC is irreducible and aperiodic and has stationary distri-
bution {πi}i, then for all i, j, k ∈ S,

lim
n→∞

∣∣∣p(n)
ik − p

(n)
jk

∣∣∣ = 0

12
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2.3.1 Proof of Markov Chain Convergence Theorem

For all i, j ∈ S, by definition of a stationary distribution, we have

∣∣∣p(n)
ij − πj

∣∣∣ =

∣∣∣∣∣∣
∑
k∈S

πk

(
p

(n)
ij − p

(n)
kj

)∣∣∣∣∣∣ ≤
∑
k∈S

πk

∣∣∣p(n)
ij − p

(n)
kj

∣∣∣
By the Markov Forgetting Lemma, we have

lim
n→∞

πk

∣∣∣p(n)
ij − p

(n)
kj

∣∣∣ = 0

Furthermore, supn≥1

∣∣∣p(n)
ij − p

(n)
kj

∣∣∣ ≤ 2 which implies

∑
k∈S

sup
n≥1

πk

∣∣∣p(n)
ij − p

(n)
kj

∣∣∣ ≤
∑
k∈S

2πk = 2 < ∞

Thus, by the M -test,

lim
n→∞

∣∣∣p(n)
ij − πj

∣∣∣ ≤ lim
n→∞

∑
k∈S

πk

∣∣∣p(n)
ij − πj

∣∣∣ =
∑
k∈S

lim
n→∞

πk

∣∣∣p(n)
ij − πj

∣∣∣ =
∑
k∈S

0 = 0

which implies
lim

n→∞
p

(n)
ij = πj

as required. For any initial distribution, {νi}, we have

lim
n→∞

P (Xn = j) = lim
n→∞

∑
i∈S

P (Xn = j, X0 = i) = lim
n→∞

∑
i∈S

νip
(n)
ij =

∑
i∈S

νi lim
n→∞

p
(n)
ij =

∑
i∈S

νiπj = πj

2.4 Periodic Convergence

Theorem (Periodic Convergence). Suppose a MC is irreducible with period b ≥ 2 and station-
ary distribution {πi}. Then for all i, j ∈ S,

lim
n→∞

1
b

[p(n)
ij + · · · + p

(n+b−1)
ij ] = πj

and

lim
n→∞

1
b

b−1∑
i=0

P (Xn+i = j) = πj

and
lim

n→∞
1
b

P [Xn = j or Xn+1 = j or · · · or Xn+b−1 = j] = πj

Corollary (Cesàro Sum). For any irreducible MC with stationary distribution {πj}, for all
i, j ∈ S,

lim
n→∞

1
n

n∑
t=1

p
(t)
ij = πj

Corollary. An irreducible MC has at most one stationary distribution.

Lemma (Cyclic Decomposition). If a MC has period b ≥ 2, then S = S0 ∪ S1 ∪ . . . ∪ Sb−1 for
Si ∩ Sj = ∅ for all i ̸= j, where if i ∈ Sr, then {j ∈ S : pij > 0} ⊆ S(r+1) mod b. Furthermore,
P (b) restricted to S0 forms an irreducible and aperiodic transition matrix.

13
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2.5 Mean Recurrences Times

The mean recurrence time of a state i is mi = Ei(inf{n ≥ 1 : Xn = i}) = Ei(Ti).

• If the chain never returns to i, then Ti = ∞

– If i is transient, then mi = ∞

– If mi < ∞, then i is recurrent

Definition. A state is positive recurrent if mi < ∞, null recurrent if recurrent but mi = ∞.

Theorem. For an irreducible MC, either

(a) mi < ∞ for all i ∈ S and there exists a unique stationary distribution given by πi = 1
mi

(b) mi = ∞ for all i ∈ S and there does not exist a stationary distribution

2.6 Stationary Measures

A stationary measure is a measure µ such that µ = µP .

Theorem. For any irreducible and recurrent MC, for i0 ∈ S,

µi0(y) =
∞∑

n=0
Pi0(Xn = y, Ti0 > n)

defines a stationary measure µi0 such that 0 < µi0(y) < ∞.

If Ei(Ti) < ∞, we can normalize and define stationary distribution

πi = µi

Ei(Ti)

Corollary. If MC is irreducible and there exists i such that i is positive recurrent, then a
stationary distribution exists.

Theorem. Suppose X is irreducible and recurrent. Let Nn(i) := ∑n
t=1 I(Xt = i). Then

Nn(i)
n

→ 1
Ei(Ti)

a.s.

Corollary. If a MC is irreducible with stationary distribution π, then

πi = 1
Ei(Ti)

for all i ∈ S.

3 Martingales

3.1 Martingale Definitions

Definition. A sequence (Xn)n≥0 is a martingale if

E(Xn+1 | X1, . . . , Xn) = Xn

14
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For a discrete sequence, the sequence is a martingale if E(Xn+1 | X0 = i0, . . . , Xn = in) = in.
If (Xn)n is a Markov chain, then

E(Xn+1 | X0 = i0, . . . , Xn = in) =
∑
j∈S

jP (Xn+1 = j | X0 = i0, . . . , Xn = in)

=
∑
j∈S

jP (Xn+1 = j | Xn = in)

=
∑
j∈S

jpin,j

= in if (Xn)n is a martingale

So, a Markov chain is a martingale if ∑j∈S jpij = i for all i ∈ S.
Alternate notation: Let {Fn} denote an increasing collection of information (so Fm ⊆ Fn

if m < n). Then if Xn is measurable wrt Fn, (Xn)n is a martingale if ∀m < n,

E(Xn | Fm) = Xm

If (Xn)n is a martingale, then

E(Xn+1) = E[E[Xn+1 | Fn]] = E(Xn)

This implies that E(Xn) = E(X0) for all n.

3.2 Stopping Times and Optional Stopping

Definition. T ∈ Z≥0 is a stopping time if the event {T = n} is determined by X0, . . . , Xn.

• 1T =n = φ(X0, . . . , Xn)

Optional Stopping Lemma: If (Xn)n is a martingale and T a bounded stopping time (i.e.:
∃M < ∞ s.t. P (T < M) = 1), then E(XT ) = E(X0).

Proof.

E(XT ) − E(X0) = E

[
T∑

k=1
(Xk − Xk−1)

]

= E

[
M∑

k=1
(Xk − Xk−1)1k≤T

]

=
M∑

k=1
E[(Xk − Xk−1)1k≤T ]

For each k, since (Xn)n is a martingale, then

E[(Xk − Xk−1)1k≤T ] = E[(Xk − Xk−1)(1 − 1k−1≥T )]

= E[(1 − 1k−1≤T )E(Xk − Xk−1 | Fk−1)]

= 0

■

15
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Optional Stopping Theorem: If (Xn)n is a martingale with stopping time T and P (T <

∞) = 1, E[|XT |] < ∞, and if lim
n→∞

E(Xn1T >n) = 0, then E(XT ) = E(X0).

Corollary. If (Xn)n is a martingale with stopping time T , which is “bounded up to time T”
(i.e.: ∃M < ∞ s.t. P (|Xn|1T ≥n ≤ M) = 1 for all n), and P (T < ∞) = 1, then E(XT ) = E(X0).

3.3 Uniform Integrability

For a fixed X,

E[|X|1A] = E[|X|1A∩{|X|>K}] + E[|X|1A∩{|X|≤K}] ≤ E[|X|1|X|>K ] + KP (A)

If F is the cdf of |X|, then

lim
K→∞

E[|X|1|X|>K ] = lim
K→∞

∫ ∞

K
|x|dF (x) = 0

Definition. A sequence of random variables (Xn)n is uniform integrable if

∀ε > 0, ∃K s.t. ∀n, E[|Xn|1|Xn|>K ] < ε

We can use uniform integrability to restate the Optional Stopping Theorem.
Optional Stopping Theorem V2: If (Xn)n is uniform integrable, T a stopping time with
T < ∞ almost surely and E[|XT |] < ∞, then E(XT ) = E(X0).
Fact: If there exists some C < ∞ such that E(X2

n) < C for each n, then the sequence is uniform
integrable.
For example, let

Zj =

1 w.p. 1
2

−1 w.p. 1
2

and define
Xn =

n∑
j=1

1
j

Zj

where the Zj are i.i.d., thus E(Xn) = 0. Then

E(X2
n) = Var(Xn) =

n∑
j=1

Var
(1

j
Zj

)
=

n∑
j=1

1
j2 ≤

∞∑
j=1

1
j2 < ∞

so Xn is uniform integrable.

3.4 Wald’s Theorem

Wald’s Theorem: If Xn = ∑n
i=1 Zi where Zi are i.i.d. with finite mean m, T is a stopping

time for Xn such that E(T ) < ∞, then E(XT ) = mE(T ).

By the optional stopping lemma, E[Xn∧T − m(n ∧ T )] = 0 for all n (where n ∧ T = min(n, T )).
This implies that

lim
n→∞

E(n ∧ T ) = E(T ) < ∞

16
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thus

|E(Xn∧T ) − E(XT )| ≤ E

[
T∑

m=n+1
|Zm|1T >n

]

= E

[ ∞∑
m=n+1

|Zm|1T ≥m

]

=
∞∑

m=n+1
E[|Zm|1T ≥m]

Since the event {T ≥ m} is determined by Z1, . . . , Zm−1, and thus independent with Zm, then

E[|Zm|1T ≥m] = E[|Zm|]P (T ≥ m)

Thus,
∞∑

m=n+1
E[|Zm|1T ≥m] ≤ E[|Z1|]

∞∑
m=n+1

P (T ≥ m)

However, since ∑∞
m=1 P (T ≥ m) = E(T ) < ∞, then ∑∞

m=n+1 P (T ≥ m) converges to 0. So,

|E(Xn∧T ) − E(XT )|→ 0

3.5 Martingale Convergence

Martingale Convergence Theorem: For a martingale (Mn)n, if E[|Mn|] ≤ C < ∞ almost
surely, then Mn → M∞ almost surely where M∞ is some random variable.

• Note that E[|Mn|] ≤ C can be replaced by one of two options:

1. Mn ≥ C for some C ∈ R

2. Mn ≤ C for some C ∈ R

For example, let (Xn)n be a simple random walk and define stopping time T = inf{t ≥ 0 :
Xt = −1} with T < ∞ almost surely. Define Yn = Xn∧T , so Yn is a martingale. Furthermore,
we know that Yn ≥ −1 almost surely by definition of T . So, by the Martingale Convergence
Theorem, Yn converges almost surely to some Y∞. In fact, Y∞ = −1 almost surely. Note,
however, that E[Y∞] ̸= E[Y0].

Fact: If (Xn)n≥0 is a martingale and is uniform integrable with E[|X∞|] < ∞, then E[X∞] =
E[X0].

• Uniform integrable suffices as an assumption for the martingale convergence theorem since
there must exist some K1 such that

E[|Xn|] ≤ E[|Xn|1|Xn|>K1 ] + E[|Xn|1|Xn|≤K1 ] ≤ K1 + 1 < ∞

Suppose (Xn)n is an irreducible Markov chain. A function f is harmonic if

f(x) =
∑
y∈S

p(x, y)f(y)

17
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When f is integrable, (f(Xn))n forms a martingale. Let T be the hitting time of Z ∈ S. Then,
Mn := f(Xn∧T ) is also a martingale.

Fact: If f is harmonic and bounded, and P (the Markov transition kernel) is a recurrent, then
f is constant.

Proof. Since recurrent, then P (T < ∞) = 1. As defined above, (Mn)n≥0 is a uniformly bounded
martingale, so Mn → M∞ almost surely. So,

E[Mn] = E[M∞] = f(Z)

thus f(x) = E[M0], which is constant. ■

In the case of transience, fix Z ∈ S. Then

f(x) :=

Px(Tz < ∞) = fxz x = z

1 x = z

From the f -expansion, f is harmonic.

3.6 Branching Processes

Let Xn be the number of individuals who are present at time n. Start with X0 = a for some
0 < a < ∞. At time n, each of the Xn individuals creates a random number of offspring to
appear at time n+1. The number of offspring of each individual is iid∼ µ where µ is the offspring
distribution on {0, 1, . . . , }. Thus, Xn+1 = Zn,1 + Zn,2 + · · · + Zn,Xn where (Zn,i)Xn

i=1
iid∼ µ. Xn

is a Markov chain.

E[Xn+1 | Fn] =
Xn∑
i=1

E[Zn,i | Fn] = XnEµ[Z] =: Xnm

Thus, Yn = m−1Xn forms a martingale.
If m < 1, then E[Xn] = mnE[X0] → 0 as n → ∞, so Xn

p→ 0. This implies that extinction is
certain if m < 1.
If m > 1, then E[Xn] = mnE[X0] → ∞. This means that P (Xn → ∞) > 0, so the probability
of flourishing exists. Assuming µ0 > 0, P (Xn → 0) > 0 still. So, P (Xn → ∞) ≤ 1 − P (Xn →
0) < 1. Thus, at m > 1, extinction and flourishing are both possible.
If m = 1, assuming µ1 < 1, then E(X0) = E(Xn) = a, so Xn is a martingale. By the Martingale
Convergence Theorem, Xn → X∞ almost surely since Xn ≥ 0. Since Xn ∈ Z, then there exists
some T < ∞ such that Xn = X∞ for all n ≥ T . Thus, the only logical solution is Xn → 0
almost surely.

4 Brownian Motion

4.1 Brownian Motion Definitions

Definition. A continuous process (Bt)t≥0 is Brownian motion if it satisfies the following:

18
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1. B0 = 0

2. Bt ∼ N (0, t)

3. Independent normal increments: For t > s, Bt −Bs ∼ N (0, t−s) and is independent with
Bs

4. Cov(Bt, Bs) = min(s, t)

5. The mapping t 7→ Bt is continuous

Fact: Brownian motion is Markov.
This is due to the strong Markov property: (Bt − Bs)t≥s is a Brownian motion and inde-
pendent of its past.

4.1.1 Stopping Times in a Continuous-Time Case

Definition. T is a stopping time if the event {T ≤ t} is determined by Ft (i.e.: by (Bs)0≤s≤t)

Fact: If T is a stopping time with P (T > ∞) < 1, then (Bt+T − Bt)t is a Brownian motion
independent of (Bs)0≤s≤t.

4.2 Reflection principle

Let T = inf{t : Bt = 1}. What is P (T ≤ 1)?
We know at time t = 1, either

• Bt ≤ 1

• Bt > 1 (has already hit 1)

This means
P (B1 ≥ 1) = P (T ≤ 1)P (B ≥ 1 | T ≤ 1)

P (B1 ≥ 1) is computable, and by the strong Markov property, (Bt−1)t≥T is a Brownian motion.
Conditionally on (Bt)0≤t≤T ,

P (B1 − 1 ≥ 0 | (Bt)0≤t≤T , T ≤ 1) = P (N(0, 1 − t) ≥ 0) = 1
2

Thus,
P (T ≤ 1) = 2P (B1 ≥ 1) = 2

∫ ∞

1

1√
2π

e− x2
2 dx

since B1 ∼ N (0, 1). This implies the Reflection Principle.
Reflection Principle: For a stopping time Ta = inf{t : Bt = a},

P (Ta ≤ t) = 2P (Bt ≥ a) = 2
∫ ∞

a

1√
2πt

e− x2
2t dx = P

(
max
0≤s≤t

Bs ≥ a

)
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4.3 Brownian Motion as a Martingale

Fact: Brownian motion is a martingale.
To see this, we know E(|Bt|< ∞) and E[Bt | Fs] = Bs for all 0 ≤ s < t because Bt =
Bs + (Bt − Bs), so Bt | Bs ∼ N (Bs, t − s).
Using this fact, we can also apply the Optional Stopping Theorem and Martingale Convergence
Theorem.
For example, let a, b > 0 and T = inf{t ≥ θ : Bt = −a or Bt = b}. What is P (Bt = −a)?
We know (Bt)t is a martingale and is bounded up to time T because |Bt|1T ≥t ≤ max(a, b).
Thus, by the Optional Stopping Theorem, E[BT ] = E[B0] = 0. However, we also know that
E[BT ] = −aP (BT = −a) + bP (BT = b), and P (BT = −a) + P (BT = b) = 1, thus P (BT =
−a) = b

a+b .
What is E(T )?
Let Yt = B2

t − t. For 0 ≤ s ≤ t

E[B2
t | Ft] = E[B2

t + (Bt − Bs)2 + 2Bs(Bt − Bs) | Fs] = B2
s + (t − s)

thus Yt is a martingale bounded up to time T . By the Optional Stopping Theorem,

0 = E[B2
T − T ] = −E[T ] + P (BT = −a)a2 + P (BT = b)b2

so E(T ) = ab.

4.4 Zero Set of Brownian Motion

Scaling Properties: If (Bt)t is a standard Browninan motion, then

1. If a > 0 and Yt = a− 1
2 Bat, then Yt is also a Brownian motion

2. If Yt = tB 1
t
, then Yt is also a Brownian motion

5 Stochastic Calculus

5.1 Stochastic Integration With Respects to Brownian Motion

The goal: To define
Zt =

∫ t

0
YsdBs

where Bs is a Brownian motion. Think of Bs as a gambling game and Ys is the amount bet at
time s. There are 3 important properties to know for Zt:

1. Zt is linear

2. Martingale Property: Zt is a martingale. In particular, E(Zt) = 0.

3. Itô’s isometry: E[Z2
t ] =

∫ t
0 E[Y 2

s ] ds
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5.2 Itô’s Calculus

Note that for stochastic integrals the FTC does not hold:∫ t

0
BsdBs ̸= 1

2(B2
t − B2

0)

since the LHS has expectation 0 but RHS has expectation t2

2 .
Itô’s Formula I: If f ∈ C2 and Bt is a standard Brownian motion, then

f(Bt) − f(B0) =
∫ t

0
f ′(Bs) dBs + 1

2

∫ t

0
f ′′(Bs) ds

Itô’s Formula implies (
f(Bt) − f(B0) − 1

2

∫ t

0
f ′′(Bs) ds

)
t≥0

is a martingale.

5.2.1 Extensions of Itô’s Formula

Suppose
dZt = Xtdt + YtdBt (1)

Then for some f ∈ C2,

df(Zt) = f ′(Zt)dZt + 1
2f ′′(Zt)Y 2

t dt = f ′(Zt)Xtdt + f ′(Zt)Ytdt + 1
2f ′′(Zt)Y 2

t dt

Definition. The quadratic variation of Zt is

⟨Z⟩t = lim
n→∞

n−1∑
j=0

[
Z j+1

n
t − Z j

n
t

]2
Thus,

⟨Z⟩t =
∫ t

0
Y 2

s ds

This implies that ∫ t

0
Y 2

s f ′′(Zs) ds =
∫ t

0
f ′′(Zs)d⟨Z⟩s

Thus, we get
Itô’s Formula II: If f ∈ C2 and Zt satisifes (1), then

f(Zt) − f(Z0) =
∫ t

0
f ′(Zs)dZs + 1

2

∫ t

0
f ′′(Zs)d⟨Z⟩s

=
∫ t

0
f ′(Zs)YsdBs +

∫ t

0

1
2f ′′(Zs)Y 2

s + f ′(Zs)Xs ds

In differential form,

df(Zt) = f ′(Zt)YtdBt + f ′(Zt)Xtdt + 1
2f ′′(Zt)Y 2

t dt

The product rule is

d(Z(1)
t Z

(2)
t ) = Z

(1)
t dZ

(2)
t + Z

(2)
t dZ

(1)
t + d⟨Z(1), Z(2)⟩t
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where

⟨Z(1), Z(2)⟩t = lim
n→∞

n−1∑
j=0

(
Z

(1)
j+1

n
t
− Z

(1)
j
n

t

)(
Z

(2)
j+1

n
t
− Z

(2)
j
n

t

)

If both Z
(1)
t and Z

(2)
t satisfy (1) respectively, then

⟨Z(1), Z(2)⟩t =
∫ t

0
Y (1)

s Y (2)
s ds

Itô’s Formula III: If f(t, x) is C1 in t, C2 in x, and Zt satisfies (1), then

∂f(t, Zt) = ∂tf(t, Zt)dt + ∂xf(t, Zt)dZt + 1
2∂2

xf(t, Zt)d⟨Z⟩t

6 Other Processes

6.1 Poisson Processes

Consider the positive real line and suppose a sequence of marked points exist on the line. Let τn

be the time between the n−1 and nth mark and let Tn = τ1 + . . .+ τn be the arrival time of the
nth mark. Let N(t) be the number of marked points on [0, t], thus N(t) = max{n ≥ 0 : Tn ≤ t}.
If we suppose τn ∼ Exponential(λ), then N(t) is a Poisson process.
If X ∼ Binomial(n, p) where p = λ

n , then as n → ∞,

P (X = k) =
(

n

k

)(
λ

n

)k (
1 − λ

n

)n−k

→ λk

k! e−λ

As a fact, N(t) ∼ Poisson(λt).

Proof. Let Sn = ∑n
t=1 Tt and let fSn be the density of Sn. Since the T1, . . . , Tn

iid∼ Exponential(λ),
then

fSn(t) = λe−λt (λt)n−1

(n − 1)! ∀t

So,

P (N(t) = n) = P (Sn ≤ t ≤ Sn+1)

=
∫ t

0
fSn(s)P (Tn+1 > t − s) ds

=
∫ t

0
λe−λt (λt)n−1

(n − 1)!e
−λ(t−s) ds

= e−λt (λt)n

n!

thus N(t) ∼ Poisson(λt). ■

Another fact: (N(t))t≥0 has independent Poisson increments. This means that if t0 < t1 <

· · · < tn, then N(ti) − N(ti−1) ∼ Poisson(λ(ti − ti−1)) and are all independent.

Definition. A Poisson process of intensity λ > 0 is a collection {N(t)}t≥0 of non-decreasing
integer-valued random variables satisfying
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1. N(0) = 0

2. N(t) ∼ Poisson(λt) for all t ≥ 0

3. N(t) has independent Poisson increments

Generalizing, let A be some subset of Rn and let N(A) be the number of marked points in A.
Then

N(A) ∼ Poisson
(∫

A
λ(x)dx

)
defines the Poisson process, and for all disjoint A, B, N(A) and N(B) are independent.

Proposition. As h → 0,

(i) P (N(t + h) − N(t) = 1) = λh + o(h)

(ii) P (N(t + h) − N(t) ≥ 2) = o(h)

Fact: Any stochastic process with independent Poisson increments and satisfying (i) and (ii)
above is a Poisson process with rate λ.
Superposition property: If (N1(t))t≥0 and (N2(t))t≥0 are independent Poisson processes with
intensity λ1 and λ2 respectively, then (N1(t) + N2(t))t≥0 is a Poisson process with intensity
λ1 + λ2.
Thinning property: Let (N(t))t≥0 be a Poisson process with intensity λ. Suppose each arrival
is independently of type i with probability pi for all i with ∑i pi = 1. Let Ni(t) be the number
of arrivals of type i up to time t. Then, then (Ni(t))t≥0 are all independent Poisson proceses
with intensity λpi.
Claim. Conditionally on N(t) = N , the number of marked points is iid∼ Uniform[0, t].

6.2 Continuous-time Discrete-space Markov Processes

Definition. A continuous-time Markov process on a countable (discrete) state space S is a
collection {X(t)}t≥0 of random variables such that

P (X0 = i0, Xt1 = i1, . . . , Xtn = in) = vi0p
(t1)
i0i1

p
(t2−t1)
i1i2

· · · p
(tn−tn−1)
in−1in

for all i0, . . . , in ∈ S and times 0 < t1 < t2 < · · · < tn.

• A Poisson process with intensity λ is a continuous-time discrete-space Markov process
with transition probabilities

p
(t)
ij =

0 j < i

e−λt(λt)j−i

(j−i)! j ≥ i

A “standard Markov process” is characterized by

lim
t→∞

p
(t)
ij = p

(0)
ij

The characteristics of discrete-time MCs apply here:
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Kolmogorov-Chapman (continuous): For s, t ≥ 0, P (s)P (t) = P (s+t). Additionally, p
(t+s)
ij

is continuous if the process is standard Markov.

Definition. A generator of a standard Markov procss is

gij := lim
t→0

pt
ij − p

(0)
ij

t

The idea is if t is small, then P (t) ≈ I + tG where G = (gij)i,j∈S .
Properties:

• gii = limt→0
p

(t)
ii −1

t ≤ 0

• gij ≥ 0

• ∑
j∈S gij = 0

• −gii = ∑
j∈S
j ̸=i

gij

Theorem (Continuous-time Transitions Theorem).

P (t) = exp(tG) := I + tG + t2G2

2! + · · ·

To compute P (t): suppose G is diagonalizable, so G = PΛP −1. Then

exp(tG) =
∞∑

n=0

tnGn

n!

= P

( ∞∑
n=0

tnΛn

)
P −1

= Pdiag[etλ1 , . . .]P −1

Definition. (πi)i∈S is a stationary distribution if πG = 0 (or equivalently, πP (t) = π).

• ∑
i∈S πigij = 0

Definition. A Markov process is reversible wrt (πi)i∈S if

πigij = πjgji

Note that reversible implies stationary since ∑j gij = 0.

Theorem. If a Markov process is irreducible and has stationary distribution π, then

lim
t→∞

p
(t)
ij = πj

for all i, j ∈ S.
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6.2.1 Constructing continuous-time Markov processes

Given a generator (gij)ij , sample the times τi from

Time =

τi ∼ Exponential(−gij) gij > 0

Absorbing state gij = 0

Define the next-step transitions as

p̃ij =


gij

−gii
j ̸= i

0 otherwise

A continuous-time Markov process with generator G is equal to in distribution to the process
above.
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