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1 Markov Chains

1.1 Markov Chain Definitions and Examples

Definition. A discrete-time, discrete-state, time-homogeneous Markov chain has 3 components
1. State space S (finite or countably infinite)
2. Initial distribution (v;);es where v; = P(Xo = 1)

3. Transitition probabilities (p;;)i jes where

. . P(Xip1 =73, Xe =1
pij=P(Xip1 =7 | Xy =1i) = (t;(Xt:i; :

We now look at the most common Markov chains.

Frog Walk

Consider S = {1,...,20}. The Frog Walk is the Markov chain defined over S with initial

probabilities defined as o9 = 1 and v; = 0 for all 7 # 20, and transition probabilities p;;
defined as

¥ ifli—jl<lorli—jl=19
Pij =
0 otherwise

1
1 5 1
3 3
3 1
3
1 3
3

w ‘.H/

By how a Markov chain is structured, we have

P(Xo=i0, X1 =141,...,Xp =1p) =

P(Xo=1i9)P(X1 =14; | Xo =1i0)P(Xo =12 | X1 = i1, X0 = i0)

"'P(Xn:in|X0:i07"',Xn—1 :in,—l)
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What makes a MC “Markov” is the Markov property:
P(Xj =ij | Xo=io, -+, Xj1 = ij1) = P(Xj =i | Xj1 =ij1)

In other words, the state of the chain at time ¢ 4+ 1 depends only on the state at time ¢. This
property implies that

P(Xo =10, X1 ="11,...,Xn = in) = VigDigirPirin " * * Pin_1in

Simple Random Walk

Let 0 < p < 1 and suppose we repeatedly gamble $1. Each time, we have a probability p
of winning $1 and a probability 1 — p of losing the dollar. Let X, represent the net gain

after n bets. In this case, S = Z and the transition probabilities are

P j=1+1
Pij=31—p j=1—1

0 otherwise

p p
-p l—-p 1-p 1-p

Ehrenfest’s Urn

Suppose we have 2 urns and d balls in total. At each time ¢, we randomly select one ball
and move it to the other urn. Let X,, be the number of balls in the left side at time n. In
this case, S = {0,...,d} and the transition probabilities are

1 d—1
Dii—1 = pl Dii+l = p

1.2 Multi-Step Transitions

Let {X,} be a Markov chain with state space S, transition probabilities p;;, and initial proba-
bilities v;. By the Markov property, we know that

P(Xo = i0, X1 = i1, X2 = 92) = VigDigi1 Piris
By the Law of Total Probability,

P(Xo = io, X2 = i2) = vj Z Pigi1 Pivio
11ES
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and
P(Xy ='ig) = Y VigPigir Piris
i0ES
i1E€S
Let m = |S|, where m < co. Write v = (v4,...,) and
P11 P12

P:=|p21 p22

where P is a m X m matrix.
Define Vi(Z) = P(Xy =1). Then v® = vP? and so on.

Definition. Let p{/) = P(X, = j | Xo =) forall i,j € S. It y; = 1 and v; = 0 for all j # 4,

then v P™ is the m-step transition probability from state i. For the new chain, it has transition

(n)

matrix P" = (pl-j )ijes-

Chapman-Kolmogorov Equations

(pmt™) (n)

pij )i,jES — Pm+n _ ( (m

- pij )) i,j€S p’lj i,jeS — szk p
keS

+st
(p§§” ), jes = PSR = (pgn))i,jes(pgj))i,jes(pgj Jijes = Y szk P pl]
kes les

The Chapman-Kolmogorov inequality follows:

Py = pl

for any fixed k£ € S and
m-+s+n m) (s) (n

(n)

Basically, to compute p;j » just compute P and observe the (7, j)th item in the resulting matrix.

1.3 Recurrence and Transcience

Definition. Let N(i) := total number of times for a Markov chain to visit ¢, so

= I(x;=1i)
t=1
Let fi; == P(N(j) > 1| Xo = i) = P;(N(j) > 1) be the probability that the Markov chain
visits j eventually, starting from 4.
In general, P;(N(i) > k) = (fi;)"* since
Bi(N(i) 2 k) = Pi(N(i) > k | N(i) 2 k = 1) - B(N(i) 2 k = 1)
(k=1)

Let 7 be the time step that hits 7 for the £ — 1th time. Then X =i, X, =1, XT_(k_l) =1,

and so on. Let 7 be a hitting time for . The above implies that

d
(Xr, Xri1s..) 2 (X0, X1s...))
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It follows that

P(NG) >k | NG >k—1)=P(r" < 0o | 7Y < o0)
= B(Tl(l) < OO)
= fii
By induction, this implies P;(N (i) > k) = (fi)*.

Corollary. P;(N(j) > k) = fi;(fj;)*?

fij if fo< 1
Corollary. E;[N(j)] =Y, P(N(j) > k) = {1fjj fij

0 otherwise

Definition. A state 7 of a Markov chain is recurrent if f;; = 1. State 7 is transient if f; < 1.

Corollary. A state i is recurrent if, and only if, P;(/N (i) = c0) = 1.

Theorem (Recurrent State Theorem). A state ¢ is recurrent if, and only if, Y77, pg?) = 00.
Proof.
Zpi? = Z Pi(Xy, =1) = Z Ei[I(Xy =1)]
n=1 n=1 n=1
o0
=F; [Z (X, = z)] by Fubini-Tonelli
n=1
= E;[N(i)]
e fa=1
N Jfii fi <1
1—fii w
[ |

Lemma (Borel-Cantelli). Let (E;):2; be a sequence of events. If ZP(EZ) < 00, then
i=1

P ((E;):2; happens finite times) = 1
Consider the simple random walk. Is state 0 recurrent?

o0
e Need to check Z pgol) = 00 as per the Recurrent State Theorem

n=1

For odd n, p(()g) (obviously). For even n, we have

pgé) =P (g heads and g losses in the first n tosses)

= (Z)pg(l —p)?
2

n!

: zp%(l _p)%
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Sterling’s approximation: If n is large, then n!~ (2)" v/2mn.
Thus,
N2 n
) ~ %W (1-p)2
[(3)% vn]
n |2
= 4p(1 — p)|24/ —
[4p(1 =p)]2 1y —
Ifp= %, then 4p(1 —p) =1, so
S () 2 _ (/]2 -
Zpoo A = — n-2 — oo
n—1 n=24,. ' TN T) n=24,..
so state 0 is recurrent if p = %
If p # %, then 4p(1 — p) < 1, then
(0.)
(n) n 2 n 4]9(1 - p)
Doy & dp(1 —p)l24/ — < dp(l —p)|2 = ———— < 0

n=24,... n=24,...

This means that for the simple random walk, state 0 is recurrent iff p =

f-expansion:
fij = pij + > pirfrj

kes
k#j

1.3.1 Gambler’s Ruin

1
3

Suppose one starts with initial money amount ¢ € N, and each round, the gain in money is

captured by
+1 with probability p
—1 with probability 1 —p

The game stops if either one of the following happens:
1. All money is lost

2. The amount of money reaches ¢ for some ¢

Let X; be the amount of money the player has at time ¢. The state space is S = {0, ..., c}, the

initial probabilities v, = 1, v; = 0 if i # a. The chain is captured as below:

P P p P P p P
/A /L
- -—
l-p—1-p 1=-p—1-p—1—-p—1-p 1-p

Some of characteristics of the series:

e foo = fee = 1, which means states 0 and ¢ are recurrent (obviously since if we start at

either then the game has already ended so the only option is to go back to the same state).
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o fii <1 for all i # 0, ¢, which means all the other states are transient

To compute the probability of losing all money given the player starts at state i, we compute

Jio-
fio =pio + Y _ Picfro

keS

k0
_{1—p+pf20 i=1
(1 —=p)fi—o +Pfiit10 > 2

= (1= p)fii—o + Pfi+1)0

Obviously, f.o = 0 since if the player starts at ¢, then he’s already won.
Special case: p = %

If this is the case, then ‘
c—1

1 1
fio = 5 fa-10 + 5 farno = —
Ifp+# %, then

fio =1 =p)fi—10 + Pfiv1)0
However,
1 1-—
Javyo — fi—no = Efio + Tpf(i—no — fio

= 1;[) (in - f(i—l)O)

(1;10)1 (f10 = foo)

So, given the player starts with a amount of money, then the probability the game ends with

the player have nothing left is

1.4 Communicating States and Irreducibility

Definition (Communication). State ¢ communicates with state j if f;; > 0 (i.e.: if it’s possible

for the chain to visit j at least once starting from ). If so, then we say i — j.
Definition (Irreducibility). A Markov chain is irreducible if i — j for all 7,5 € S.
e i< jifi—>jand j—1

Note that from above, Gambler’s ruin is obviously reducible since fo. = f.0 = 0.

Fact: If i <> k, then ¢ is recurrent iff k is.

Corollary. For an irreducible MC, either
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(a) All states are recurrent

(b) All states are transient

Lemma (Sum). If i — &k, | — j, and Zpg;) = 00, then Zpgf) = 0.

n=1 n=1

Proof. By definition, we know there exists m and r such that pE?) > 0 and pg) > (0. By the
Chapman-Kolmogorov inequality, we have

pID > piplpt) > 0

Since each pgl) > 0, then

o0 o0
sz(?) = Z pgy szmﬁﬂ) ZPp zk Pz] Zpkl =0
n=1

n=m+r+1 s=1

Theorem (Finite Space). An irreducible Markov chain on a finite state space always falls into

case (a) of the above corollary.

Proof. Choose any state i. Then

IPILAED I IED T

jeSn=1 n=1j€8
Since S is finite, there must exist some j € S such that > 2 ; pfj) = 00. |

Lemma (Hit). Define H;; = {MC hits state ¢ before returning to j}. If j communicates with
i with j # ¢, then P;(H;;) > 0.

Lemma (f). If j =i and f;; = 1, then f;; = 1.
Proof. We know that Pj(H;;) > 0 by the Hit Lemma. Then
Pj(H;j)Pi(never returns to j) < Pj (never returns to j)

since one way to never return to j is to first visit 4 then never return to j. But since fj; = 1
and by the Hit Lemma,
1 — fij = Pi(never return to j) =0

which means f;; = 1. |
Lemma (Infinite Returns). For irreducible MC, if recurrent, then for all 4, j € S,
PAN() = 00) = 1

If transient, then for all 4, j € .5,
Py(N(j)=00) =0
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Proof. If recurrent, then f;; = fj; = 1 by the f-Lemma. So, for all k,

P(N(j) = k) = fi(f;)* ' = (MO =1

thus P;(N(j) = o0) = lim P(N(j)=k) = lim 1= 1.
k—o00 k—o00
If transient, then

. ‘ N e k=1
klgr;oR(N(j) =k)= kliﬂgo fij(fi5) =0

since fj; < 1. |

Theorem (Recurrence Equivalences Theorem). If a MC is irreducible, then the following are

equivalent:

o
1. There exists k,[ € S such that Zpg;) = 00

n=1

2. For alli,j € S, Zpgl) =00

n=1

3. There exists k such that fyp =1
4. For all i, fi; =1
5. For all 4,7, fi; =1
6. There exists k, [ such that P,(N(l) = o00) =1
7. For all i,j, P;(N(j) =0) =1
All equivalences can be proven with the lemmas above. For transience, there’s a similar theorem:

Theorem (Transience Equivalences Theorem). If a MC is irreducible, then the following are

equivalent:

o
1. Foralli,j €5, sz(?) < 00

n=1

(o]
2. There exists ¢, 7 such that Z pz(;»l) < 00

n=1

3. Forall k, fir <1

4. There exists 7 such that f; < 1

5. There exists 4, j such that f;; <1

6. For all k,1, P,(N(l) =o0) < 1

7. There exists 4, j such that P;(N(j) = 00) <1

Proposition. There exists irreducible MC such that it’s transient but there exists k,l such
that fkl = 1.
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Take the simple random walk for example with p > % We know that

DPoo = n /g .
~ (4p(1 —p))24/=. otherwise

o0
so 3 pi) < 0.

n=1
Fact: If 7 is transcient, j recurrent, then j /4 i.

Proof. Suppose j — i. Then

0 = Pj(never return to 1)

> Pj(visit i) P;j(not return to j)

However, P;(visit i) > 0, so P;(not return to j). Thus, ¢ <+ j, so since j is recurrent, then so is

i, a contradiction. Thus, j /4 1. |

2 Markov Chain Convergence

2.1 Stationary Distributions
(n)

Suppose M§n) = P(X,, = j) with p; " — ¢; for all states j. Then since

+1
uﬁ" )~ qj

) — mp

we have

q=qP
Definition. If 7 is a probability distribution on S, then 7 is stationary for a MC with transition

probabilities (p;;) if

Zﬂ-ipij = VJ €S
i€S

T
Ifwewriteﬂz[m Ty .- } , then 7P = 7.

For example, take the frog walk and let m be a 1 x 20 vector with % in all of its entries. Is 7 a

stationary distribution? For all j € S,

yDETTREN LU B S S
TP = o0\37373) T2
€S

thus 7 is stationary.

Definition (Doubly stochastic). If Zpij = 1 in addition to > ,cgpij = 1, then the MC is
€S
doubly stochastic.
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Let 7 be a uniform distribution for a doubly stochastic chain on S, so m; = Iiél Then,

Z TiPij = szg ‘ =

1€S zGS

Definition (Reversible). A MC is reversible wrt distribution {;} if m;p;; = m;p;; for alli,j € S.
Proposition. If a chain is reversible wrt 7, then 7 is a stationary distribution.

Proof. Reversibility means m;p;; = mjpj;, thus

Y mipij =Y mipji = (1) =

€S €S
|

Fact: There exists a MC P with stationary distribution 7 such that P is not reversible wrt 7.

M-test
(0.0)
Consider a sequence {Zpj }n ken. Suppose hm Ty exists for all k£ € N, and Z sup|xpk|< oo .

k=1 n>1
Then,

oo o
lim Tk = lim x
A, 2 o = 2, ltn, 2o

Proposition (Vanishing Probabilities). If h_}m p(»n)
n—oo

i =0 for all 7,57 € S, then a stationary

distribution does not exist.

Proof. Suppose 7 is stationary, so 7; = Z Tripgl) for any n, thus
€S

m; = lim m; = hm Zmpgl)

n—0o0
ZES

Notice that

Zsup\mpw |< Zm =1<o0
iesn=l =

so by the M-test,

) : —
m = Jim = Jim 3w =3 lim mpl” =300=0
ies ies €S

which is a contradiction since Z m; = 0. |
JES
Lemma (Vanishing). If a MC has some k,l € S such that Jim p;(;lb) = 0, then for all i,j € §
such that £k — ¢ and j7 — [, then lim pl(?) = 0.
n—oo

Proof. There exists r, s € N such that p,(c? > 0 and p§§) > 0. By Chapman-Kolmogorov,

r+n-+s r n s
p;(gz ) > pl(ei)pz(j )pg'l)

10
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Thus,
(r+n+s)
(n) Pk
Pij - =" ) )
Pri Pj
(r+n-+s)
By the assumption, we know that lim “2L— — = oo, thus since p@ > 0, by the Squeeze
n—co (1) (s) v
D Pj
: (n) _
Theorem, nh_)ngo p;- = 0. |

Corollary. For an irreducible MC, either

(i) lim pgl) =0 for all 4,5 € S (the MC is transient)

(ii) T}Lrgopgy) # 0 for all 4,j € S (the MC is recurrent)

Corollary. If an irreducible MC has nlgréo pl(g;) = 0 for some k,l € S, then it does not a

stationary distribution.

(n)

Proof. By the above corollary, if there exists k,l such that lim, . p,;; = 0, then since the

chain is irreducible, we have lim, o pgl) = 0 for all 7,5 € S. By the Vanishing Probabilities

proposition, the chain does not have a stationary distribution. |

2.2 Obstacles to Convergence

10
Let S ={1,2}, 1 =1, and (p;;) = (0 1).

D) @
Let 11 =9 = %, so {m;} is stationary. However,

lim P(X,=1)=1%#

n—oo

:7‘[‘1

| =

so the chain does not converge to stationarity.

Definition (Period). The period of a state ¢ is the ged of {n > 1: JORIES 0}. If the period of

[

every state ¢ is 1, then the MC is aperiodic. Otherwise, it is periodic.

Its entirely possible to have a MC be aperiodic despite all p;; = 0. Take S = {1,2,3} and

consider the transition probabilities

(pz'j) =

= o= O
= O N
O NI N

Clearly, wecango 1 -2 —-1lor1 — 2 — 3 — 2 — 1, and so on, so the period of state 1 is
ged{2,3,...} = 1. Similarly, the period of states 2 and 3 are each 1, so the chain is aperiodic.
However, p;; =0 for all ¢ € S.

o Since ged{1,...,} =1, then if p;; > 0, state ¢ has period 1

11
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o Since ged{n,n+1,...,} =1, then if both p(n) > (0 and p(?ﬂ)

i 7

> 0, state ¢ has period 1

Take the frog walk for example. We know that p; = % for all 4, so the chain is aperiodic.
For the simple random walk, we can only return to a state after an even number of moves, thus

the period of each state is 2.
Lemma (Equal Periods). If ¢ <+ j, then the periods of i and j are equal.

Proof. Let t; and t; be the periods of states ¢ and j respectively. We know there exists 7,5 € N
(r)

such that p;- >0 and pgf) > 0, thus by Chapman-Kolmogorov,
P = ol
thus ¢; |  + s. Suppose for some n that pg-?) > 0. Then by Chapman-Kolmogorov again,
pir ) > p{plpl)

thus t; | r +n+s. Since t; | 7+ s, then we must have ¢; | n, so t; is a common divisor of the set
A={n>1: pg?) > 0}. But since t; = gcd(A), then ¢; and ¢; divide each other, which implies
ti=t. n

2.3 Markov Chain Convergence Theorem

Theorem (Markov Chain Convergence). If a MC is irreducible, aperiodic, and has a stationary
distribution 7, then for all 4,5 € .S,
lim p(n)

n—oot i =7

and for any initial distribution {v;},

lim P(X, =j)=mnj

n—oo

Theorem (Stationary Recurrence). If a MC is irreducible and has a stationary distribution m,

then it’s recurrent.

Proposition. If state i is aperiodic and f;; > 0, then there exists some ny(i) € N such that

pz(»?) > 0 for all n > ng(i).

Proof. Let A = {n > 1 : p(m > 0} # 0 since f;; > 0. If m,n € A, then by Chapman-

i1
(m+n) (m) (n) . s s . )
i > p;; Py > 0 thus m +n € A so A satisfies additivity. Citing Bézout’s

Kolmogorov, p i

Identity completes the proof. |

Corollary. If a MC is irreducible and aperiodic, then for all 7, j € S, there exists some ng(i, j) €

N such that for all n > ng(4,5), pz(»?) > 0.
Lemma (Markov Forgetting). If a MC is irreducible and aperiodic and has stationary distri-
bution {7;};, then for all i, 5,k € S,

lim ’pgg) — p(z)’ =0

n—00 J

12
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2.3.1 Proof of Markov Chain Convergence Theorem

For all 4,j € S, by definition of a stationary distribution, we have

o )

By the Markov Forgetting Lemma, we have

<> m

kesS

(n) (N)’

ng _TFJ‘_ k |Pij _pkj

Py~ i) =0

lim
n—0o0

pg.l) — p](g-)’ < 2 which implies

Zsupﬁk pgj —pk])‘ < Z27rk =2<
kes "2 kes

Furthermore, sup,,~;

Thus, by the M-test,

Py —m =3 0=0

keS

lim
n—oo

(n) _ ’ : (n) _ ‘ _ :
SRR RS SEN TAEET D SR
keS kesS

which implies

T (-
=7

as required. For any initial distribution, {v;}, we have

nlLH;O P(X,=j)= nlgngoZP(Xn =5,Xo=1)= nlgn;OZuipZJ ZI/Z lim pw Zum’j =
€S €S i€S €S

2.4 Periodic Convergence

Theorem (Periodic Convergence). Suppose a MC is irreducible with period b > 2 and station-
ary distribution {7;}. Then for all i,j € S,

B [pw o =
and
=
Am_ - ;]P(Xn—i-i =Jj) =7
and

1
fi EP[XH =jor Xppp=jor - or Xppp1=j] = Ty

n—oo
Corollary (Cesaro Sum). For any irreducible MC with stationary distribution {7}, for all
i, €9,
lim 1 ip(-t-) =T,
n—oo n, v J
t=1
Corollary. An irreducible MC has at most one stationary distribution.

Lemma (Cyclic Decomposition). If a MC has period b > 2, then S = SpU S1 U...U S, for
S;NS; =0 for all i # j, where if i € S, then {j € S : pjj > 0} € S(41) mod s Furthermore,

PO restricted to Sy forms an irreducible and aperiodic transition matrix.

13
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2.5 Mean Recurrences Times
The mean recurrence time of a state i is m; = E;(inf{n > 1: X,, = i}) = E;(T;).
e If the chain never returns to i, then T; = oo

— If 7 is transient, then m; = oo

— If m; < oo, then 7 is recurrent
Definition. A state is positive recurrent if m; < oo, null recurrent if recurrent but m; = co.

Theorem. For an irreducible MC, either
(a) m; < oo for all i € S and there exists a unique stationary distribution given by m; = mi

(b) m; = oo for all ¢ € S and there does not exist a stationary distribution

2.6 Stationary Measures
A stationary measure is a measure p such that yu = uP.

Theorem. For any irreducible and recurrent MC, for ig € S,
[o.¢]
i (y) = Z Py (Xn =y, Tiy >n)
n=0

defines a stationary measure p;, such that 0 < p;,(y) < oo.

If E;(T;) < oo, we can normalize and define stationary distribution

12

Corollary. If MC is irreducible and there exists ¢ such that 7 is positive recurrent, then a

stationary distribution exists.
Theorem. Suppose X is irreducible and recurrent. Let N, (i) := Y 1~ I(X¢ =4). Then

sz(i) - E»(lT')

a.s.

Corollary. If a MC is irreducible with stationary distribution 7, then

forallz e S.

3 Martingales

3.1 Martingale Definitions

Definition. A sequence (X, ),>0 is a martingale if
E(Xpi1 | X1, X0) = X,

14
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For a discrete sequence, the sequence is a martingale if E(X,+1 | Xo = d0,..., Xn = in) = in.
If (X,,)n is a Markov chain, then

E(Xpi1 | Xo=i0,..., Xn =in) = > jP(Xnp1 =34 | Xo=1i0,..., Xpn =1ip)
jes

:ZjP(XnJrl =7 | Xn=in)
jeS

= Z JPinj

jes

=i, if (X)), is a martingale

So, a Markov chain is a martingale if ) ;cq jpi; = 4 for all i € S.
Alternate notation: Let {.%#,} denote an increasing collection of information (so .%#,, C .%,

if m < n). Then if X,, is measurable wrt .%,, (X, ), is a martingale if Vm < n,
E(Xy | Fm) = Xim
If (X,,)n is a martingale, then
E(Xn1) = E[E[Xni1 | Z0]] = E(Xy)
This implies that F(X,) = E(Xy) for all n.

3.2 Stopping Times and Optional Stopping

Definition. T € Zx( is a stopping time if the event {T' = n} is determined by X, ..., X,,.
i ]lT:n = (,O(Xo, cee 7Xn)

Optional Stopping Lemma: If (X)), is a martingale and T a bounded stopping time (i.e.:
dM < 0o s.t. P(T' < M) =1), then E(X7) = E(X)y).

Proof.
T
E(Xr) - E(Xo)=FE [Z(Xk - Xk—l)]
M
=F lZ(Xk - Xkl)]lk<T]

M
=Y E[(Xy — Xp—1)lp<r]

For each k, since (X,,),, is a martingale, then

E[(Xg — Xp—1)lg<r] = E[(Xg — Xp—1)(1 — Lg—1>7)]
= B[(1 = Lj1<r) E(Xg — Xp—1 | Fpp—1))]
=0

15
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Optional Stopping Theorem: If (X,,), is a martingale with stopping time 7" and P(T <
o) =1, E[|X7|] < o0, and if Jim E(X,17>y) =0, then E(X7) = E(X)).

Corollary. If (X,), is a martingale with stopping time 7', which is “bounded up to time 7"
(i.e.: AM < 00 s.t. P(|Xp|Llpsy, < M) =1foralln), and P(T < o0) = 1, then E(X7) = E(X)).

3.3 Uniform Integrability
For a fixed X,
Bl X14] = E[[X[Langx >3] + B[ X[Langx<xy] < B[ X[ x> k] + KP(A)
If F' is the cdf of | X]|, then
o0
lim B[ X[1)yx] = lim / l2|dF () = 0
K—oo K—oo JK
Definition. A sequence of random variables (X,,),, is uniform integrable if
Ve > 0,3K s.t. Vn,E[|Xn]]1|Xn|>K] <e

We can use uniform integrability to restate the Optional Stopping Theorem.

Optional Stopping Theorem V2: If (X,,), is uniform integrable, T" a stopping time with
T < oo almost surely and E[|Xr|] < oo, then E(X7) = E(X)).

Fact: If there exists some C < oo such that E(X?2) < C for each n, then the sequence is uniform

integrable.
For example, let
1 w.p %
Z - { :

and define

where the Z; are i.i.d., thus F(X,) = 0. Then

" 1 "1 > 1
E(X}) = Var(X,) = ) Var (,Zj> =Y 5<> 5<x
=1 J =77 =l
so X, is uniform integrable.
3.4 Wald’s Theorem
Wald’s Theorem: If X,, = """, Z; where Z; are i.i.d. with finite mean m, T is a stopping

time for X,, such that E(T") < oo, then E(X7) = mE(T).
By the optional stopping lemma, E[X,,»7 —m(n AT)] = 0 for all n (where n AT = min(n,T)).

This implies that
lim E(nAT)=E(T) < o
n—oo

16
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thus

|E(Xnar) — E(X7)| < E

T
Z |Zm|]1T>n‘|

m=n+1

o[£ e

m=n+1

= " El|Zullrsn)

m=n+1

Since the event {T' > m} is determined by Zi,..., Z,,—1, and thus independent with Z,,, then
El|Zm|Ar>m] = E[|Zm||P(T > m)

Thus,

oo o0
Y. ElZuwllrsm] < E[|lZi]] ) P(T>m)
m=n-+1 m=n+1
However, since 771 P(T' > m) = E(T) < oo, then 77 . P(T' > m) converges to 0. So,

|E(Xnar) — E(X7)|— 0

3.5 Martingale Convergence

Martingale Convergence Theorem: For a martingale (M,,),, if E[|M,|] < C < oo almost

surely, then M,, — M, almost surely where M, is some random variable.

» Note that E[|M,|] < C can be replaced by one of two options:

1. M, > C for some C € R
2. M, <C for some C € R

For example, let (X,,), be a simple random walk and define stopping time 7" = inf{t > 0 :
X; = —1} with T' < oo almost surely. Define Y,, = X,,a1, so Y, is a martingale. Furthermore,
we know that Y,, > —1 almost surely by definition of 7. So, by the Martingale Convergence
Theorem, Y,, converges almost surely to some Y,,. In fact, Yoo = —1 almost surely. Note,
however, that E[Ys] # E[Yo].

Fact: If (X,,)n>0 is a martingale and is uniform integrable with E[|X|] < oo, then F[Xy] =
E[Xy].

o Uniform integrable suffices as an assumption for the martingale convergence theorem since

there must exist some K7 such that

E[|Xn]] < E[|Xn|lx, > 5] + E| XnlLx, <] < K1+ 1 <00

Suppose (X, ), is an irreducible Markov chain. A function f is harmonic if

f@)=> plz,y)fy)

yes

17
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When f is integrable, (f(Xy)), forms a martingale. Let T" be the hitting time of Z € S. Then,

M, := f(Xpar) is also a martingale.

Fact: If f is harmonic and bounded, and P (the Markov transition kernel) is a recurrent, then

f is constant.

Proof. Since recurrent, then P(T' < oo) = 1. As defined above, (M,,),>0 is a uniformly bounded

martingale, so M,, — My, almost surely. So,
E[My] = E[Mx] = f(Z)
thus f(x) = E[Mpy], which is constant. [ |

In the case of transience, fix Z € S. Then

1 r=2z

fa) = {Px(TZ <) = frr T=12

From the f-expansion, f is harmonic.

3.6 Branching Processes

Let X,, be the number of individuals who are present at time n. Start with X¢ = a for some
0 < a < co. At time n, each of the X, individuals creates a random number of offspring to
appear at time n+ 1. The number of offspring of each individual is i 1 where p is the offspring
distribution on {0,1,...,}. Thus, X411 = Zp1 + Zn2 + -+ + Zp x,, Where (Zm)fi"l ud e Xnp

is a Markov chain.
Xn
EXp1 | Fn) =Y ElZn; | Fu) = XnEulZ] =: Xpm
=1

Thus, Y, = m~'X,, forms a martingale.

If m < 1, then E[X,] = m"E[X,] — 0 as n — 00, so X,, = 0. This implies that extinction is
certain if m < 1.

If m > 1, then E[X,] = m"E[Xo] — oco. This means that P(X,, — co) > 0, so the probability
of flourishing exists. Assuming po > 0, P(X,, — 0) > 0 still. So, P(X,, - o) <1— P(X, —
0) < 1. Thus, at m > 1, extinction and flourishing are both possible.

If m = 1, assuming p; < 1, then F(Xy) = E(X,) = a, so X, is a martingale. By the Martingale
Convergence Theorem, X;,, = X, almost surely since X,, > 0. Since X,, € Z, then there exists
some T < oo such that X,, = X for all n > T. Thus, the only logical solution is X,, — 0

almost surely.

4 Brownian Motion

4.1 Brownian Motion Definitions

Definition. A continuous process (Bi)i>0 is Brownian motion if it satisfies the following:

18
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1. Bp=0

3. Independent normal increments: For ¢t > s, By — B; ~ N(0,t — s) and is independent with
Bs

4. Cov(Bt, Bs) = min(s,t)
5. The mapping ¢ — B, is continuous

Fact: Brownian motion is Markov.

This is due to the strong Markov property: (B; — B;):>s is a Brownian motion and inde-
pendent of its past.

4.1.1 Stopping Times in a Continuous-Time Case

Definition. T is a stopping time if the event {T' < t} is determined by .% (i.e.: by (Bs)o<s<t)
Fact: If T' is a stopping time with P(T" > oo) < 1, then (Byyr — Bt): is a Brownian motion
independent of (Bs)o<s<t-

4.2 Reflection principle

Let T = inf{t : By =1}. What is P(T < 1)?
We know at time t = 1, either

e B <1
e B; > 1 (has already hit 1)

This means
PBi>1)=PT<1)P(B>1|T<1)

P(B; > 1) is computable, and by the strong Markov property, (B;—1);>7 is a Brownian motion.
Conditionally on (By)o<t<T,

1
P(Bl—120](Bt)UStST,TS1):P(N(0,1—t)20):§
Thus, - ,
P(T <1)=2P(B >1:2/ T d
(T'<1) (B1 > 1) L x

since By ~ N(0,1). This implies the Reflection Principle.
Reflection Principle: For a stopping time T, = inf{t : B; = a},

[e.9] 1 z2
< = > = - = >
P(Ta <) =2P(B 2 a) 2/a Nl P(%l?%tBs—“)

19
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4.3 Brownian Motion as a Martingale

Fact: Brownian motion is a martingale.

To see this, we know E(|Bi|< oo) and E[B; | %s] = Bs for all 0 < s < t because By =
Bs + (B; — Bs), so By | B ~ N(Bs,t — s).

Using this fact, we can also apply the Optional Stopping Theorem and Martingale Convergence
Theorem.

For example, let a,b > 0 and T' = inf{t > 0 : B; = —a or B; = b}. What is P(B; = —a)?

We know (B;): is a martingale and is bounded up to time T because |B¢|17>; < max(a,b).
Thus, by the Optional Stopping Theorem, E[Br|] = E[By] = 0. However, we also know that
E[Br| = —aP(Br = —a) + bP(Br = b), and P(Br = —a) + P(Br = b) = 1, thus P(Br =
—a) = ai-i—b'

What is E(T)?

Let Y;=B? —t. For0 < s <t

E[B} | 7] = E[B} + (Bi = Bs)® + 2Bs(By = By) | Fs] = B + (t — )
thus Y; is a martingale bounded up to time T'. By the Optional Stopping Theorem,
0= E[B% —T| = —E[T] + P(By = —a)a®> + P(Br = b)b?
so E(T) = ab.

4.4 Zero Set of Brownian Motion

Scaling Properties: If (B;); is a standard Browninan motion, then

1. Ifa>0and V; = a_%Bat, then Y; is also a Brownian motion

2. If Y; = tB1, then Y; is also a Brownian motion
t

5 Stochastic Calculus

5.1 Stochastic Integration With Respects to Brownian Motion

The goal: To define
t
zi = [ Y,
0

where By is a Brownian motion. Think of B, as a gambling game and Y is the amount bet at

time s. There are 3 important properties to know for Z:
1. Z; is linear
2. Martingale Property: Z; is a martingale. In particular, E(Z;) = 0.

3. Ttd’s isometry: E[Z7] = [ E[Y2]ds

20
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5.2 TItd’s Calculus

Note that for stochastic integrals the FT'C does not hold:
! L o 2
/O BydB, # 5 (B} - BY)

since the LHS has expectation 0 but RHS has expectation %

It6’s Formula I: If f € C? and B is a standard Brownian motion, then

F(B) — F(Bo) = /f dB+2/f”

(¢80 - 1(B0) - 5 / 1B )DO

1t6’s Formula implies

is a martingale.

5.2.1 Extensions of It6’s Formula

Suppose
dZ; = X,dt + Y;dB, (1)

Then for some f € C?,
1 1
df (Zy) = f'(Z;)dZ; + 5f"(Zt)det = fI(Z) Xydt + f(Z,)Ydt + if”(Zt)Ytht

Definition. The quadratic variation of Z; is

n—1

@0 = Jin 3 [2i, -2,
=

t
Z>t :/ Y;QdS
0

t t
[ virazyas= [ zoaz)
0 0
Thus, we get

It6’s Formula II: If f € C? and Z; satisifes (1), then

Thus,

This implies that

fz0 - 120 = [ #1a9ize+ 5 [ 7).
_/f J)YsdB, +/ S (ZOY2 + [(Z) X, ds
In differential form,
A7) = F(Z)VidBy + /(20 Xudt + 3 ()Y
The product rule is
Az 2y = zVaz? + zPaz) + a(zV, 2z,
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where

n—oo

n—1
(20, 2?), = tim 3 (Z” -7y ) (Z” 7y )
3=0 " !

If both Zt(l) and Zt@) satisfy (1) respectively, then

VARIACIN / v

It6’s Formula III: If f(¢,2) is C' in ¢, C? in x, and Z; satisfies (1), then

Of(t, Zy) = Osf (t, Zy)dt + O f(t, Zy)dZ; + %aif(t, Z)d(Z);

6 Other Processes

6.1 Poisson Processes

Consider the positive real line and suppose a sequence of marked points exist on the line. Let 7,
be the time between the n — 1 and nth mark and let T,, = 7 +. ..+ 7, be the arrival time of the
nth mark. Let N(¢) be the number of marked points on [0, t], thus N (¢) = max{n > 0: T, < t}.
If we suppose 7, ~ Exponential(A), then N (t) is a Poisson process.

If X ~ Binomial(n,p) where p = %, then as n — oo,

== () ) 02 e

As a fact, N(t) ~ Poisson(At).

Proof. Let S, = >_i; Tt and let fg, be the density of S,,. Since the T1,..., T, ud Exponential(A),
then X
At)"
fs, (t) = pe- M PO,

(n—1)!
So,
P(N(t)=n)=P(S, <t < Spt+1)
—/fgn P( n+1>t—$)d$
n—1
_ / }\e—?\t At ?\(t—s) ds
(n—
A"
n!
thus N (t) ~ Poisson(At). [ |

Another fact: (N(t)):>0 has independent Poisson increments. This means that if typ < t; <
- < tp, then N(t;) — N(t;—1) ~ Poisson(A(t; — t;—1)) and are all independent.

Definition. A Poisson process of intensity A > 0 is a collection {N(t)}+>0 of non-decreasing

integer-valued random variables satisfying
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1. N(0)=0
2. N(t) ~ Poisson(At) for all t > 0
3. N(t) has independent Poisson increments

Generalizing, let A be some subset of R"” and let N(A) be the number of marked points in A.
Then

N(A) ~ Poisson (/A A(x)dx)
defines the Poisson process, and for all disjoint A, B, N(A) and N(B) are independent.
Proposition. As h — 0,
(i) P(N(t+h)—N(t) =1) = A+ o(h)
(ii) P(N(t+h) — N(t) > 2) = o(h)

Fact: Any stochastic process with independent Poisson increments and satisfying (i) and (ii)
above is a Poisson process with rate A.

Superposition property: If (N1 (t)):>0 and (N2(t))¢>0 are independent Poisson processes with

intensity A; and A2 respectively, then (Ni(t) + Na(t))i>0 is a Poisson process with intensity
A1 =+ Ag.
Thinning property: Let (N (t)):>0 be a Poisson process with intensity A. Suppose each arrival

is independently of type ¢ with probability p; for all ¢ with Y, p; = 1. Let N;(t) be the number
of arrivals of type ¢ up to time ¢. Then, then (N;(t)):>0 are all independent Poisson proceses
with intensity Ap;.

Claim. Conditionally on N(t) = N, the number of marked points is i Uniform|0, ¢].

6.2 Continuous-time Discrete-space Markov Processes

Definition. A continuous-time Markov process on a countable (discrete) state space S is a

collection {X (¢)}+>0 of random variables such that

P(Xo = iy Xiy = i1y, X, = i) = v3gpl ) pl3 ™) - plinino)

n i0i1pi1i2 in—1%n
for all ig,...,7, € S and times 0 < t1 <ty < -+ < ty,.

e A Poisson process with intensity A is a continuous-time discrete-space Markov process

with transition probabilities

S0 _ {0 j<i
I Y A
o i

A “standard Markov process” is characterized by

(t) _ (0)

lim p;;/ = Dij

t—o0 i

The characteristics of discrete-time MCs apply here:
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(t+s)

Kolmogorov-Chapman (continuous): For s,¢ > 0, P() P(*) = p(s+t) - Additionally, Dij

is continuous if the process is standard Markov.

Definition. A generator of a standard Markov procss is
0
o lim pgj _pz(j)
9ij : t—0 t
The idea is if ¢ is small, then P®) ~ I + tG where G = (9ij)i,jes-

Properties:

. p(.l.t)—l
o gii = limyo ~5— <0

e 9i; =0
* Zjes 9i5 =0
* —Gii = >_jeS Yij
J#i
Theorem (Continuous-time Transitions Theorem).

2 G?

P = exp(tG) := I +tG + 51

To compute P®): suppose G is diagonalizable, so G = PAP~!'. Then

exp(tG) = Z G

n=0
e}
=P (Z t”A”) P!
n=0
= Pdiagle™, .. |P71

n!

Definition. (7;)ics is a stationary distribution if 7G = 0 (or equivalently, 7P® = 7).
* Yiesmigij =0
Definition. A Markov process is reversible wrt (7;);eg if
Ti9ij = Tj9ji
Note that reversible implies stationary since }_; gi; = 0.
Theorem. If a Markov process is irreducible and has stationary distribution =, then

lim p(t-)

t—o00 i =T

for all 7,5 € S.
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6.2.1 Constructing continuous-time Markov processes

Given a generator (g;;);j, sample the times 7; from

T~ Exponential(—gij) Gij > 0

Time =
Absorbing state 9ij =0
Define the next-step transitions as
9ij . .
- =L j#i
Dij = git
0 otherwise

A continuous-time Markov process with generator G is equal to in distribution to the process

above.
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