STA447 Notes

Ian Zhang

1 Markov Chains

1.1 Markov Chain Definitions and Examples

Definition. A discrete-time, discrete-state, time-homogeneous Markov chain has 3 components:

- 1. State space *S* (finite or countably infinite)
- 2. Initial distribution $(\nu_i)_{i \in S}$ where $\nu_i = P(X_0 = i)$
- 3. Transitition probabilities $(p_{ij})_{i,j\in S}$ where

$$
p_{ij} = P(X_{t+1} = j \mid X_t = i) = \frac{P(X_{t+1} = j, X_t = i)}{P(X_t = i)}
$$

We now look at the most common Markov chains.

Frog Walk

Consider $S = \{1, \ldots, 20\}$. The Frog Walk is the Markov chain defined over *S* with initial probabilities defined as $\nu_{20} = 1$ and $\nu_i = 0$ for all $i \neq 20$, and transition probabilities p_{ij} defined as

$$
p_{ij} = \begin{cases} \frac{1}{3} & \text{if } |i-j| \le 1 \text{ or } |i-j| = 19\\ 0 & \text{otherwise} \end{cases}
$$

By how a Markov chain is structured, we have

$$
P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = P(X_0 = i_0)P(X_1 = i_i | X_0 = i_0)P(X_2 = i_2 | X_1 = i_1, X_0 = i_0)
$$

$$
\cdots P(X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1})
$$

What makes a MC "Markov" is the **Markov property**:

$$
P(X_j = i_j \mid X_0 = i_0, \cdots, X_{j-1} = i_{j-1}) = P(X_j = i_j \mid X_{j-1} = i_{j-1})
$$

In other words, the state of the chain at time $t + 1$ depends only on the state at time t . This property implies that

$$
P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \nu_{i_0} p_{i_0 i_1} p_{i_1 i_2} \cdots p_{i_{n-1} i_n}
$$

Simple Random Walk

Let $0 < p < 1$ and suppose we repeatedly gamble \$1. Each time, we have a probability p of winning \$1 and a probability $1 - p$ of losing the dollar. Let X_n represent the net gain after *n* bets. In this case, $S = \mathbb{Z}$ and the transition probabilities are

$$
p_{ij} = \begin{cases} p & j = i + 1 \\ 1 - p & j = i - 1 \\ 0 & \text{otherwise} \end{cases}
$$

$$
\cdots \underbrace{\overset{p}{\bullet} \underset{1-p}{\bullet} \underset{1-p}{\bullet} \underset{1-p}{\overset{p}{\bullet}} \underset{1-p}{\overset{p}{\bullet}} \underset{1-p}{\overset{p}{\bullet}} \underset{1-p}{\overset{p}{\bullet}} \underset{1-p}{\overset{p}{\bullet}} \cdots
$$

Ehrenfest's Urn

Suppose we have 2 urns and *d* balls in total. At each time *t*, we randomly select one ball and move it to the other urn. Let X_n be the number of balls in the left side at time *n*. In this case, $S = \{0, \ldots, d\}$ and the transition probabilities are

$$
p_{i,i-1} = \frac{i}{d}
$$
 $p_{i,i+1} = \frac{d-i}{d}$

1.2 Multi-Step Transitions

Let $\{X_n\}$ be a Markov chain with state space *S*, transition probabilities p_{ij} , and initial probabilities ν_i . By the Markov property, we know that

$$
P(X_0 = i_0, X_1 = i_1, X_2 = i_2) = \nu_{i_0} p_{i_0 i_1} p_{i_1 i_2}
$$

By the Law of Total Probability,

$$
P(X_0 = i_0, X_2 = i_2) = \nu_{i_0} \sum_{i_1 \in S} p_{i_0 i_1} p_{i_1 i_2}
$$

and

$$
P(X_2 = i_2) = \sum_{\substack{i_0 \in S \\ i_1 \in S}} \nu_{i_0} p_{i_0 i_1} p_{i_1 i_2}
$$

Let $m = |S|$, where $m \leq \infty$. Write $\nu = (\nu_1, \dots, \nu_n)$ and

$$
P := \begin{pmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix}
$$

where *P* is a $m \times m$ matrix.

Define $\nu_i^{(2)} = P(X_2 = i)$. Then $\nu^{(2)} = \nu P^2$ and so on.

Definition. Let $p_{ij}^{(n)} = P(X_n = j \mid X_0 = i)$ for all $i, j \in S$. If $\nu_i = 1$ and $\nu_j = 0$ for all $j \neq i$, then νP^m is the *m*-step transition probability from state *i*. For the new chain, it has transition matrix $P^{n} = (p_{ij}^{(n)})_{i,j \in S}$.

Chapman-Kolmogorov Equations

$$
(p_{ij}^{(m+n)})_{i,j \in S} = P^{m+n} = (p_{ij}^{(m)})_{i,j \in S} (p_{ij}^{(n)})_{i,j \in S} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}
$$

$$
(p_{ij}^{(m+s+n)})_{i,j \in S} = P^{m+s+n} = (p_{ij}^{(m)})_{i,j \in S} (p_{ij}^{(s)})_{i,j \in S} (p_{ij}^{(n)})_{i,j \in S} = \sum_{k \in S} \sum_{l \in S} p_{ik}^{(m)} p_{kl}^{(s)} p_{lj}^{(n)}
$$

The Chapman-Kolmogorov inequality follows:

$$
p_{ij}^{(m+n)} \ge p_{ik}^{(m)} p_{jk}^{(n)}
$$

for any fixed $k \in S$ and

$$
p_{ij}^{(m+s+n)} \geq p_{ik}^{(m)} p_{kl}^{(s)} p_{lj}^{(n)}
$$

Basically, to compute $p_{ij}^{(n)}$, just compute P^n and observe the (i, j) th item in the resulting matrix.

1.3 Recurrence and Transcience

Definition. Let $N(i) :=$ total number of times for a Markov chain to visit *i*, so

$$
N(i) = \sum_{t=1}^{\infty} I(x_t = i)
$$

Let $f_{ij} := P(N(j) \ge 1 | X_0 = i) = P_i(N(j) \ge 1)$ be the probability that the Markov chain visits *j* eventually, starting from *i*.

In general, $P_i(N(i) \ge k) = (f_{ii})^k$ since

$$
P_i(N(i) \ge k) = P_i(N(i) \ge k \mid N(i) \ge k - 1) \cdot P_i(N(i) \ge k - 1)
$$

Let $\tau_i^{(k-1)}$ *i*^{*i*} be the time step that hits *i* for the *k* − 1th time. Then $X_0 = i$, $X_{\tau_i} = i$, $X_{\tau_i^{(k-1)}} = i$, and so on. Let τ be a hitting time for *i*. The above implies that

$$
(X_{\tau}, X_{\tau+1}, \ldots) \stackrel{d}{=} (X_0, X_1, \ldots,)
$$

It follows that

$$
P_i(N(i) \ge k \mid N(i) \ge k - 1) = P_i(\tau_i^{(k)} < \infty \mid \tau_i^{(k-1)} < \infty) \\
= P_i(\tau_i^{(1)} < \infty) \\
= f_{ii}
$$

By induction, this implies $P_i(N(i) \ge k) = (f_{ii})^k$.

Corollary. $P_i(N(j) \ge k) = f_{ij}(f_{jj})^{k-1}$

Corollary.
$$
E_i[N(j)] = \sum_{k=1}^{\infty} P_i(N(j) \ge k) = \begin{cases} \frac{f_{ij}}{1 - f_{jj}} & \text{if } f_{jj} < 1 \\ 0 & \text{otherwise} \end{cases}
$$

Definition. A state *i* of a Markov chain is **recurrent** if $f_{ii} = 1$. State *i* is **transient** if $f_{ii} < 1$. **Corollary.** A state *i* is recurrent if, and only if, $P_i(N(i) = \infty) = 1$.

Theorem (Recurrent State Theorem). A state *i* is recurrent if, and only if, $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$. *Proof.*

$$
\sum_{n=1}^{\infty} p_{ii}^{(n)} = \sum_{n=1}^{\infty} P_i(X_n = i) = \sum_{n=1}^{\infty} E_i[I(X_n = i)]
$$

= $E_i \left[\sum_{n=1}^{\infty} I(X_n = i) \right]$ by Fubini-Tonelli
= $E_i[N(i)]$
= $\begin{cases} \infty & f_{ii} = 1 \\ \frac{f_{ii}}{1 - f_{ii}} & f_{ii} < 1 \end{cases}$

Lemma (Borel-Cantelli). Let $(E_i)_{i=1}^{\infty}$ be a sequence of events. If \sum^{∞} *i*=1 $P(E_i) < \infty$, then

 $P((E_i)_{i=1}^{\infty}$ happens finite times) = 1

Consider the simple random walk. Is state 0 recurrent?

• Need to check $\sum_{n=1}^{\infty}$ *n*=1 $p_{00}^{(n)} = \infty$ as per the Recurrent State Theorem

For odd *n*, $p_{00}^{(n)}$ (obviously). For even *n*, we have

$$
p_{00}^{(n)} = P\left(\frac{n}{2}\text{ heads and } \frac{n}{2}\text{ losses in the first }n\text{ tosses}\right)
$$

$$
= \left(\frac{n}{\frac{n}{2}}\right)p^{\frac{n}{2}}(1-p)^{\frac{n}{2}}
$$

$$
= \frac{n!}{\left[\left(\frac{n}{2}\right)! \right]^2}p^{\frac{n}{2}}(1-p)^{\frac{n}{2}}
$$

■

$$
p_{00}^{(n)} \approx \frac{\left(\frac{n}{e}\right)^n \sqrt{2\pi n}}{\left[\left(\frac{n}{2e}\right)^{\frac{n}{2}} \sqrt{\pi n}\right]^2} p^{\frac{n}{2}} (1-p)^{\frac{n}{2}}
$$

$$
= [4p(1-p)]^{\frac{n}{2}} \sqrt{\frac{2}{\pi n}}
$$

If $p=\frac{1}{2}$ $\frac{1}{2}$, then $4p(1-p) = 1$, so

$$
\sum_{n=1}^{\infty} p_{00}^{(n)} \approx \sum_{n=2,4,...} \sqrt{\frac{2}{\pi n}} = \left(\sqrt{\frac{2}{\pi}}\right) \sum_{n=2,4,...} n^{-\frac{1}{2}} \to \infty
$$

so state 0 is recurrent if $p=\frac{1}{2}$ $\frac{1}{2}$. If $p \neq \frac{1}{2}$ $\frac{1}{2}$, then $4p(1-p) < 1$, then

$$
\sum_{n=1}^{\infty} p_{00}^{(n)} \approx \sum_{n=2,4,...} [4p(1-p)]^{\frac{n}{2}} \sqrt{\frac{2}{\pi n}} < \sum_{n=2,4,...} [4p(1-p)]^{\frac{n}{2}} = \frac{4p(1-p)}{1-4p(1-p)} < \infty
$$

This means that for the simple random walk, state 0 is recurrent iff $p = \frac{1}{2}$ $rac{1}{2}$. *f*-expansion:

$$
f_{ij} = p_{ij} + \sum_{\substack{k \in S \\ k \neq j}} p_{ik} f_{kj}
$$

1.3.1 Gambler's Ruin

Suppose one starts with initial money amount $a \in \mathbb{N}$, and each round, the gain in money is captured by

$$
\begin{cases}\n+1 & \text{with probability } p \\
-1 & \text{with probability } 1 - p\n\end{cases}
$$

The game stops if either one of the following happens:

- 1. All money is lost
- 2. The amount of money reaches *c* for some *c*

Let X_t be the amount of money the player has at time *t*. The state space is $S = \{0, \ldots, c\}$, the initial probabilities $\nu_a = 1$, $\nu_i = 0$ if $i \neq a$. The chain is captured as below:

Some of characteristics of the series:

• $f_{00} = f_{cc} = 1$, which means states 0 and *c* are recurrent (obviously since if we start at either then the game has already ended so the only option is to go back to the same state).

• f_{ii} < 1 for all $i \neq 0, c$, which means all the other states are transient

To compute the probability of losing all money given the player starts at state *i*, we compute *fi*0.

$$
f_{i0} = p_{i0} + \sum_{\substack{k \in S \\ k \neq 0}} p_{ik} f_{k0}
$$

=
$$
\begin{cases} 1 - p + pf_{20} & i = 1 \\ (1 - p) f_{(i-1)0} + pf_{(i+1)0} & i \geq 2 \end{cases}
$$

=
$$
(1 - p) f_{(i-1)0} + pf_{(i+1)0}
$$

Obviously, $f_{c0} = 0$ since if the player starts at *c*, then he's already won. Special case: $p = \frac{1}{2}$ 2 If this is the case, then

$$
f_{i0} = \frac{1}{2}f_{(i-1)0} + \frac{1}{2}f_{(i+1)0} = \frac{c-i}{c}
$$

If $p \neq \frac{1}{2}$ $\frac{1}{2}$, then

$$
f_{i0} = (1 - p)f_{(i-1)0} + pf_{(i+1)0}
$$

However,

$$
f_{(i+1)0} - f_{(i-1)0} = \frac{1}{p} f_{i0} + \frac{1-p}{p} f_{(i-1)0} - f_{i0}
$$

$$
= \frac{1-p}{p} \left(f_{i0} - f_{(i-1)0} \right)
$$

$$
= \cdots
$$

$$
= \left(\frac{1-p}{p} \right)^i (f_{10} - f_{00})
$$

So, given the player starts with *a* amount of money, then the probability the game ends with the player have nothing left is

$$
f_{a0} = \begin{cases} \frac{\left(\frac{1-p}{p}\right)^c - \left(\frac{1-p}{p}\right)^a}{\left(\frac{1-p}{p}\right)^c - 1} & p \neq \frac{1}{2} \\ \frac{c-a}{c} & p = \frac{1}{2} \end{cases}
$$

1.4 Communicating States and Irreducibility

Definition (Communication). State *i* communicates with state *j* if $f_{ij} > 0$ (i.e.: if it's possible for the chain to visit *j* at least once starting from *i*). If so, then we say $i \rightarrow j$.

Definition (Irreducibility)**.** A Markov chain is irreducible if $i \rightarrow j$ for all $i, j \in S$.

• $i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$

Note that from above, Gambler's ruin is obviously reducible since $f_{0c} = f_{c0} = 0$. **Fact:** If $i \leftrightarrow k$, then *i* is recurrent iff *k* is.

Corollary. For an irreducible MC, either

■

- (a) All states are recurrent
- (b) All states are transient

Lemma (Sum). If $i \to k$, $l \to j$, and $\sum_{i=1}^{\infty}$ *n*=1 $p_{kl}^{(n)} = \infty$, then $\sum_{l=1}^{\infty}$ *n*=1 $p_{ij}^{(n)}=\infty.$

Proof. By definition, we know there exists *m* and *r* such that $p_{ik}^{(m)} > 0$ and $p_{lj}^{(r)} > 0$. By the Chapman-Kolmogorov inequality, we have

$$
p_{ij}^{(m+s+r)} \ge p_{ik}^{(m)} p_{kl}^{(s)} p_{lj}^{(r)} > 0
$$

Since each $p_{ij}^{(n)} \geq 0$, then

$$
\sum_{n=1}^{\infty} p_{ij}^{(n)} \ge \sum_{n=m+r+1}^{\infty} p_{ij}^{(n)} = \sum_{s=1}^{\infty} p_{ij}^{(m+s+r)} \ge p_{ik}^{(m)} p_{lj}^{(r)} \sum_{s=1}^{\infty} p_{kl}^{(s)} = \infty
$$

Theorem (Finite Space)**.** An irreducible Markov chain on a finite state space always falls into case (a) of the above corollary.

Proof. Choose any state *i*. Then

$$
\sum_{j \in S} \sum_{n=1}^{\infty} p_{ij}^{(n)} = \sum_{n=1}^{\infty} \sum_{j \in S} p_{ij}^{(n)} = \sum_{n=1}^{\infty} 1 = \infty
$$

Since *S* is finite, there must exist some $j \in S$ such that $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$.

Lemma (Hit). Define $H_{ij} = \{MC \text{ hits state } i \text{ before returning to } j\}$. If *j* communicates with $i \text{ with } j \neq i, \text{ then } P_j(H_{ij}) > 0.$

Lemma (*f*). If $j \rightarrow i$ and $f_{jj} = 1$, then $f_{ij} = 1$.

Proof. We know that $P_i(H_{ij}) > 0$ by the Hit Lemma. Then

$$
P_j(H_{ij})P_i
$$
(never returns to $j) \leq P_j$ (never returns to j)

since one way to never return to *j* is to first visit *i* then never return to *j*. But since $f_{jj} = 1$ and by the Hit Lemma,

$$
1 - f_{ij} = P_i
$$
(never return to j) = 0

which means $f_{ij} = 1$.

Lemma (Infinite Returns). For irreducible MC, if recurrent, then for all $i, j \in S$,

$$
P_i(N(j) = \infty) = 1
$$

If transient, then for all $i, j \in S$,

$$
P_i(N(j) = \infty) = 0
$$

Proof. If recurrent, then $f_{ij} = f_{jj} = 1$ by the *f*-Lemma. So, for all *k*,

$$
P_i(N(j) = k) = f_{ij}(f_{jj})^{k-1} = (1)(1)^{k-1} = 1
$$

thus $P_i(N(j) = \infty) = \lim_{k \to \infty} P_i(N(j) = k) = \lim_{k \to \infty} 1 = 1.$ If transient, then

$$
\lim_{k \to \infty} P_i(N(j) = k) = \lim_{k \to \infty} f_{ij}(f_{jj})^{k-1} = 0
$$

since f_{jj} < 1.

Theorem (Recurrence Equivalences Theorem)**.** If a MC is irreducible, then the following are equivalent:

- 1. There exists $k, l \in S$ such that $\sum_{l=1}^{\infty}$ *n*=1 $p_{kl}^{(n)} = \infty$
- 2. For all $i, j \in S$, $\sum_{n=1}^{\infty}$ *n*=1 $p_{ij}^{(n)}=\infty$
- 3. There exists *k* such that $f_{kk} = 1$
- 4. For all $i, f_{ii} = 1$
- 5. For all *i*, *j*, $f_{ij} = 1$
- 6. There exists *k, l* such that $P_k(N(l) = \infty) = 1$
- 7. For all *i*, *j*, $P_i(N(j) = \infty) = 1$

All equivalences can be proven with the lemmas above. For transience, there's a similar theorem:

Theorem (Transience Equivalences Theorem)**.** If a MC is irreducible, then the following are equivalent:

- 1. For all $i, j \in S$, $\sum_{n=1}^{\infty}$ *n*=1 $p_{ij}^{(n)} < \infty$
- 2. There exists *i*, *j* such that $\sum_{n=1}^{\infty}$ *n*=1 $p_{ij}^{(n)} < \infty$
- 3. For all $k, f_{kk} < 1$
- 4. There exists *i* such that $f_{ii} < 1$
- 5. There exists *i, j* such that $f_{ij} < 1$
- 6. For all $k, l, P_k(N(l) = \infty) < 1$
- 7. There exists *i*, *j* such that $P_i(N(j) = \infty) < 1$

Proposition. There exists irreducible MC such that it's transient but there exists k, l such that $f_{kl} = 1$.

Take the simple random walk for example with $p > \frac{1}{2}$. We know that

$$
p_{00}^{(n)} = \begin{cases} 0 & n \equiv 0 \mod 2\\ \approx (4p(1-p))^{\frac{n}{2}}\sqrt{\frac{2}{\pi n}} & \text{otherwise} \end{cases}
$$

so $\sum_{n=1}^{\infty}$ *n*=1 $p_{00}^{(n)} < \infty$. **Fact:** If *i* is transcient, *j* recurrent, then $j \nleftrightarrow i$.

Proof. Suppose $j \rightarrow i$. Then

 $0 = P_i$ (never return to *i*) $\geq P_i$ (visit *i*) P_i (not return to *j*)

However, P_j (visit i) > 0, so P_i (not return to *j*). Thus, $i \leftrightarrow j$, so since *j* is recurrent, then so is i , a contradiction. Thus, $j \nleftrightarrow i$.

2 Markov Chain Convergence

2.1 Stationary Distributions

Suppose $\mu_i^{(n)}$ $j_j^{(n)} := P(X_n = j)$ with $\mu_j^{(n)} \to q_j$ for all states *j*. Then since

$$
\mu_j^{(n+1)} \to q_j
$$

$$
\mu^{(n+1)} = \mu^{(n)} P
$$

we have

$$
q = qP
$$

Definition. If π is a probability distribution on *S*, then π is stationary for a MC with transition probabilities (p_{ij}) if

$$
\sum_{i \in S} \pi_i p_{ij} = \pi_j \quad \forall j \in S
$$

If we write $\pi = \begin{bmatrix} \pi_1 & \pi_2 & \cdots \end{bmatrix}^T$, then $\pi P = \pi$.

For example, take the frog walk and let π be a 1×20 vector with $\frac{1}{20}$ in all of its entries. Is π a stationary distribution? For all $j \in S$,

$$
\sum_{i \in S} \pi_i p_{ij} = \frac{1}{20} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) = \frac{1}{20} = \pi_j
$$

thus π is stationary.

Definition (Doubly stochastic). If Σ *i*∈*S* $p_{ij} = 1$ in addition to $\sum_{j \in S} p_{ij} = 1$, then the MC is doubly stochastic.

■

Let π be a uniform distribution for a doubly stochastic chain on *S*, so $\pi_i = \frac{1}{15}$ $\frac{1}{|S|}$. Then,

$$
\sum_{i \in S} \pi_i p_{ij} = \frac{1}{|S|} \sum_{i \in S} p_{ij} = \frac{1}{|S|} = \pi_j
$$

Definition (Reversible). A MC is reversible wrt distribution $\{\pi_i\}$ if $\pi_i p_{ij} = \pi_j p_{ji}$ for all $i, j \in S$. **Proposition.** If a chain is reversible wrt π , then π is a stationary distribution.

Proof. Reversibility means $\pi_i p_{ij} = \pi_j p_{ji}$, thus

$$
\sum_{i \in S} \pi_i p_{ij} = \sum_{i \in S} \pi_j p_{ji} = \pi_j(1) = \pi_j
$$

Fact: There exists a MC *P* with stationary distribution π such that *P* is not reversible wrt π .

Consider a sequence $\{x_{nk}\}_{n,k\in\mathbb{N}}$. Suppose $\lim_{n\to\infty}x_{nk}$ exists for all $k\in\mathbb{N}$, and $\sum_{n=1}^{\infty}$ *k*=1 sup $\sup_{n\geq 1} |x_{nk}| < \infty$. Then,

$$
\lim_{n \to \infty} \sum_{k=1}^{\infty} x_{nk} = \sum_{k=1}^{\infty} \lim_{n \to \infty} x_{nk}
$$

Proposition (Vanishing Probabilities). If $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$, then a stationary distribution does not exist.

Proof. Suppose π is stationary, so $\pi_j = \sum$ *i*∈*S* $\pi_i p_{ij}^{(n)}$ for any *n*, thus (*n*)

$$
\pi_j = \lim_{n \to \infty} \pi_j = \lim_{n \to \infty} \sum_{i \in S} \pi_i p_{ij}^{(n)}
$$

Notice that

M-test

$$
\sum_{i \in S} \sup_{n \ge 1} |\pi_i p_{ij}^{(n)}| \le \sum_{i \in S} \pi_i = 1 < \infty
$$

so by the *M*-test,

$$
\pi_j = \lim_{n \to \infty} \pi_j = \lim_{n \to \infty} \sum_{i \in S} \pi_i p_{ij}^{(n)} = \sum_{i \in S} \lim_{n \to \infty} \pi_i p_{ij}^{(n)} = \sum_{i \in S} 0 = 0
$$

which is a contradiction since \sum *j*∈*S* $\pi_j = 0$.

Lemma (Vanishing). If a MC has some $k, l \in S$ such that $\lim_{n \to \infty} p_{kl}^{(n)} = 0$, then for all $i, j \in S$ such that $k \to i$ and $j \to l$, then $\lim_{n \to \infty} p_{ij}^{(n)} = 0$.

Proof. There exists $r, s \in \mathbb{N}$ such that $p_{ki}^{(r)} > 0$ and $p_{jl}^{(s)} > 0$. By Chapman-Kolmogorov,

$$
p_{kl}^{(r+n+s)} \ge p_{ki}^{(r)} p_{ij}^{(n)} p_{jl}^{(s)}
$$

Thus,

$$
p_{ij}^{(n)} \le \frac{p_{kl}^{(r+n+s)}}{p_{ki}^{(r)}p_{jl}^{(s)}}
$$

By the assumption, we know that $\lim_{n\to\infty} \frac{p_{kl}^{(r+n+s)}}{p_{kl}^{(r)}(p_{nl}(s))}$ *kl* $p_{ki}^{(r)}p_{jl}^{(s)}$ *jl* $= \infty$, thus since $p_{ij}^{(n)} \geq 0$, by the Squeeze Theorem, $\lim_{n\to\infty} p_{ij}^{(n)}$ $\binom{n}{ij} = 0.$

Corollary. For an irreducible MC, either

- (i) $\lim_{n \to \infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$ (the MC is *transient*)
- (ii) $\lim_{n \to \infty} p_{ij}^{(n)} \neq 0$ for all $i, j \in S$ (the MC is *recurrent*)

Corollary. If an irreducible MC has $\lim_{n\to\infty} p_{kl}^{(n)} = 0$ for some $k, l \in S$, then it does not a stationary distribution.

Proof. By the above corollary, if there exists *k, l* such that $\lim_{n\to\infty} p_{kl}^{(n)} = 0$, then since the chain is irreducible, we have $\lim_{n\to\infty} p_{ij}^{(n)} = 0$ for all $i, j \in S$. By the Vanishing Probabilities proposition, the chain does not have a stationary distribution.

2.2 Obstacles to Convergence

Let $S = \{1, 2\}, \nu_1 = 1$, and $(p_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. $1 \subset \widehat{(1)}$ $\widehat{(2)} \supseteq 2$

Let $\pi_1 = \pi_2 = \frac{1}{2}$ $\frac{1}{2}$, so $\{\pi_i\}$ is stationary. However,

$$
\lim_{n \to \infty} P(X_n = 1) = 1 \neq \frac{1}{2} = \pi_1
$$

so the chain does not converge to stationarity.

Definition (Period). The period of a state *i* is the gcd of $\{n \geq 1 : p_{ii}^{(n)} > 0\}$. If the period of every state *i* is 1, then the MC is aperiodic. Otherwise, it is periodic.

Its entirely possible to have a MC be aperiodic despite all $p_{ii} = 0$. Take $S = \{1, 2, 3\}$ and consider the transition probabilities

$$
(p_{ij}) = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}
$$

Clearly, we can go $1 \rightarrow 2 \rightarrow 1$ or $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1$, and so on, so the period of state 1 is $gcd{2, 3, \ldots} = 1$. Similarly, the period of states 2 and 3 are each 1, so the chain is aperiodic. However, $p_{ii} = 0$ for all $i \in S$.

• Since $gcd{1, ...,} = 1$, then if $p_{ii} > 0$, state *i* has period 1

• Since $gcd\{n, n+1, \ldots\} = 1$, then if both $p_{ii}^{(n)} > 0$ and $p_{ii}^{(n+1)} > 0$, state *i* has period 1

Take the frog walk for example. We know that $p_{ii} = \frac{1}{3}$ $\frac{1}{3}$ for all *i*, so the chain is aperiodic. For the simple random walk, we can only return to a state after an even number of moves, thus the period of each state is 2.

Lemma (Equal Periods). If $i \leftrightarrow j$, then the periods of *i* and *j* are equal.

Proof. Let t_i and t_j be the periods of states *i* and *j* respectively. We know there exists $r, s \in \mathbb{N}$ such that $p_{ij}^{(r)} > 0$ and $p_{ji}^{(s)} > 0$, thus by Chapman-Kolmogorov,

$$
p_{ii}^{(r+s)} \geq p_{ij}^{(r)}p_{ji}^{(s)}
$$

thus $t_i | r + s$. Suppose for some *n* that $p_{jj}^{(n)} > 0$. Then by Chapman-Kolmogorov again,

$$
p_{ii}^{(r+n+s)} \geq p_{ij}^{(r)} p_{jj}^{(n)} p_{ji}^{(s)}
$$

thus $t_i | r + n + s$. Since $t_i | r + s$, then we must have $t_i | n$, so t_i is a common divisor of the set $A = \{n \geq 1 : p_{jj}^{(n)} > 0\}$. But since $t_j = \gcd(A)$, then t_i and t_j divide each other, which implies $t_i = t_j$.

2.3 Markov Chain Convergence Theorem

Theorem (Markov Chain Convergence)**.** If a MC is irreducible, aperiodic, and has a stationary distribution π , then for all $i, j \in S$,

$$
\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j
$$

and for any initial distribution $\{\nu_i\},\$

$$
\lim_{n \to \infty} P(X_n = j) = \pi_j
$$

Theorem (Stationary Recurrence)**.** If a MC is irreducible and has a stationary distribution *π*, then it's recurrent.

Proposition. If state *i* is aperiodic and $f_{ii} > 0$, then there exists some $n_0(i) \in \mathbb{N}$ such that $p_{ii}^{(n)} > 0$ for all $n \ge n_0(i)$.

Proof. Let $A = \{n \geq 1 : p_{ii}^{(n)} > 0\} \neq \emptyset$ since $f_{ii} > 0$. If $m, n \in A$, then by Chapman-Kolmogorov, $p_{ii}^{(m+n)} \ge p_{ii}^{(m)} p_{ii}^{(n)} > 0$ thus $m+n \in A$ so A satisfies additivity. Citing Bézout's Identity completes the proof.

Corollary. If a MC is irreducible and aperiodic, then for all $i, j \in S$, there exists some $n_0(i, j) \in$ N such that for all $n \ge n_0(i, j)$, $p_{ij}^{(n)} > 0$.

Lemma (Markov Forgetting)**.** If a MC is irreducible and aperiodic and has stationary distribution $\{\pi_i\}_i$, then for all $i, j, k \in S$,

$$
\lim_{n \to \infty} \left| p_{ik}^{(n)} - p_{jk}^{(n)} \right| = 0
$$

2.3.1 Proof of Markov Chain Convergence Theorem

For all $i, j \in S$, by definition of a stationary distribution, we have

$$
\left| p_{ij}^{(n)} - \pi_j \right| = \left| \sum_{k \in S} \pi_k \left(p_{ij}^{(n)} - p_{kj}^{(n)} \right) \right| \le \sum_{k \in S} \pi_k \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right|
$$

By the Markov Forgetting Lemma, we have

$$
\lim_{n \to \infty} \pi_k \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right| = 0
$$

Furthermore, $\sup_{n\geq 1} \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right|$ $\binom{\binom{n}{k}}{k j} \leq 2$ which implies

$$
\sum_{k \in S} \sup_{n \ge 1} \pi_k \left| p_{ij}^{(n)} - p_{kj}^{(n)} \right| \le \sum_{k \in S} 2\pi_k = 2 < \infty
$$

Thus, by the *M*-test,

$$
\lim_{n \to \infty} |p_{ij}^{(n)} - \pi_j| \le \lim_{n \to \infty} \sum_{k \in S} \pi_k |p_{ij}^{(n)} - \pi_j| = \sum_{k \in S} \lim_{n \to \infty} \pi_k |p_{ij}^{(n)} - \pi_j| = \sum_{k \in S} 0 = 0
$$

which implies

$$
\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j
$$

as required. For any initial distribution, $\{\nu_i\}$, we have

$$
\lim_{n \to \infty} P(X_n = j) = \lim_{n \to \infty} \sum_{i \in S} P(X_n = j, X_0 = i) = \lim_{n \to \infty} \sum_{i \in S} \nu_i p_{ij}^{(n)} = \sum_{i \in S} \nu_i \lim_{n \to \infty} p_{ij}^{(n)} = \sum_{i \in S} \nu_i \pi_j = \pi_j
$$

2.4 Periodic Convergence

Theorem (Periodic Convergence). Suppose a MC is irreducible with period $b \ge 2$ and stationary distribution $\{\pi_i\}$. Then for all $i, j \in S$,

$$
\lim_{n \to \infty} \frac{1}{b} [p_{ij}^{(n)} + \dots + p_{ij}^{(n+b-1)}] = \pi_j
$$

and

$$
\lim_{n \to \infty} \frac{1}{b} \sum_{i=0}^{b-1} P(X_{n+i} = j) = \pi_j
$$

and

$$
\lim_{n \to \infty} \frac{1}{b} P[X_n = j \text{ or } X_{n+1} = j \text{ or } \cdots \text{ or } X_{n+b-1} = j] = \pi_j
$$

Corollary (Cesàro Sum). For any irreducible MC with stationary distribution $\{\pi_j\}$, for all $i, j \in S$,

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} p_{ij}^{(t)} = \pi_j
$$

Corollary. An irreducible MC has at most one stationary distribution.

Lemma (Cyclic Decomposition). If a MC has period $b \geq 2$, then $S = S_0 \cup S_1 \cup \ldots \cup S_{b-1}$ for $S_i \cap S_j = \emptyset$ for all $i \neq j$, where if $i \in S_r$, then $\{j \in S : p_{ij} > 0\} \subseteq S_{(r+1) \mod b}$. Furthermore, $P^(b)$ restricted to $S₀$ forms an irreducible and aperiodic transition matrix.

2.5 Mean Recurrences Times

The mean recurrence time of a state *i* is $m_i = E_i(\inf\{n \geq 1 : X_n = i\}) = E_i(T_i)$.

- If the chain never returns to *i*, then $T_i = \infty$
	- **–** If *i* is transient, then *mⁱ* = ∞
	- $-$ If $m_i < \infty$, then *i* is recurrent

Definition. A state is positive recurrent if $m_i < \infty$, null recurrent if recurrent but $m_i = \infty$.

Theorem. For an irreducible MC, either

- (a) $m_i < \infty$ for all $i \in S$ and there exists a unique stationary distribution given by $\pi_i = \frac{1}{m_i}$ *mⁱ*
- (b) $m_i = \infty$ for all $i \in S$ and there does not exist a stationary distribution

2.6 Stationary Measures

A stationary measure is a measure μ such that $\mu = \mu P$.

Theorem. For any irreducible and recurrent MC, for $i_0 \in S$,

$$
\mu_{i_0}(y) = \sum_{n=0}^{\infty} P_{i_0}(X_n = y, T_{i_0} > n)
$$

defines a stationary measure μ_{i_0} such that $0 < \mu_{i_0}(y) < \infty$.

If $E_i(T_i) < \infty$, we can normalize and define stationary distribution

$$
\pi_i = \frac{\mu_i}{E_i(T_i)}
$$

Corollary. If MC is irreducible and there exists *i* such that *i* is positive recurrent, then a stationary distribution exists.

Theorem. Suppose *X* is irreducible and recurrent. Let $N_n(i) := \sum_{t=1}^n I(X_t = i)$. Then

$$
\frac{N_n(i)}{n} \to \frac{1}{E_i(T_i)} \quad a.s.
$$

Corollary. If a MC is irreducible with stationary distribution $π$, then

$$
\pi_i = \frac{1}{E_i(T_i)}
$$

for all $i \in S$.

3 Martingales

3.1 Martingale Definitions

Definition. A sequence $(X_n)_{n>0}$ is a martingale if

$$
E(X_{n+1} | X_1, \ldots, X_n) = X_n
$$

For a discrete sequence, the sequence is a martingale if $E(X_{n+1} | X_0 = i_0, \ldots, X_n = i_n) = i_n$. If $(X_n)_n$ is a Markov chain, then

$$
E(X_{n+1} | X_0 = i_0, \dots, X_n = i_n) = \sum_{j \in S} jP(X_{n+1} = j | X_0 = i_0, \dots, X_n = i_n)
$$

$$
= \sum_{j \in S} jP(X_{n+1} = j | X_n = i_n)
$$

$$
= \sum_{j \in S} jp_{i_n,j}
$$

$$
= i_n \text{ if } (X_n)_n \text{ is a martingale}
$$

So, a Markov chain is a martingale if $\sum_{j \in S} j p_{ij} = i$ for all $i \in S$.

Alternate notation: Let $\{\mathscr{F}_n\}$ denote an increasing collection of information (so $\mathscr{F}_m \subseteq \mathscr{F}_n$ if $m < n$). Then if X_n is measurable wrt \mathscr{F}_n , $(X_n)_n$ is a martingale if $\forall m < n$,

$$
E(X_n \mid \mathcal{F}_m) = X_m
$$

If $(X_n)_n$ is a martingale, then

$$
E(X_{n+1}) = E[E[X_{n+1} | \mathcal{F}_n]] = E(X_n)
$$

This implies that $E(X_n) = E(X_0)$ for all *n*.

3.2 Stopping Times and Optional Stopping

Definition. $T \in \mathbb{Z}_{\geq 0}$ is a stopping time if the event $\{T = n\}$ is determined by X_0, \ldots, X_n .

• $1\!\!1_{T=n} = \varphi(X_0, \ldots, X_n)$

Optional Stopping Lemma: If $(X_n)_n$ is a martingale and *T* a bounded stopping time (i.e.: ∃*M* < ∞ s.t. $P(T < M) = 1$, then $E(X_T) = E(X_0)$.

Proof.

$$
E(X_T) - E(X_0) = E\left[\sum_{k=1}^T (X_k - X_{k-1})\right]
$$

=
$$
E\left[\sum_{k=1}^M (X_k - X_{k-1})1_{k \le T}\right]
$$

=
$$
\sum_{k=1}^M E[(X_k - X_{k-1})1_{k \le T}]
$$

For each *k*, since $(X_n)_n$ is a martingale, then

$$
E[(X_k - X_{k-1})1_{k \le T}] = E[(X_k - X_{k-1})(1 - 1_{k-1 \ge T})]
$$

=
$$
E[(1 - 1_{k-1 \le T})E(X_k - X_{k-1} | \mathcal{F}_{k-1})]
$$

= 0

15

■

Optional Stopping Theorem: If $(X_n)_n$ is a martingale with stopping time *T* and $P(T \leq$ ∞) = 1, $E[|X_T|] < \infty$, and if $\lim_{n \to \infty} E(X_n \mathbb{1}_{T > n}) = 0$, then $E(X_T) = E(X_0)$.

Corollary. If $(X_n)_n$ is a martingale with stopping time *T*, which is "bounded up to time *T*" (i.e.: $\exists M < \infty$ s.t. $P(|X_n|\mathbb{1}_{T>n} \leq M) = 1$ for all *n*), and $P(T < \infty) = 1$, then $E(X_T) = E(X_0)$.

3.3 Uniform Integrability

For a fixed *X*,

$$
E[|X|1\!\!1_A] = E[|X|1\!\!1_{A\cap\{|X|>K\}}] + E[|X|1\!\!1_{A\cap\{|X|\le K\}}] \le E[|X|1\!\!1_{|X|>K}] + KP(A)
$$

If F is the cdf of $|X|$, then

$$
\lim_{K\to\infty}E[|X|1\!\!1_{|X|>K}]=\lim_{K\to\infty}\int_K^\infty\!|x|dF(x)=0
$$

Definition. A sequence of random variables $(X_n)_n$ is uniform integrable if

$$
\forall \varepsilon > 0, \exists K \text{ s.t. } \forall n, E[|X_n| \mathbb{1}_{|X_n| > K}] < \varepsilon
$$

We can use uniform integrability to restate the Optional Stopping Theorem.

Optional Stopping Theorem V2: If $(X_n)_n$ is uniform integrable, T a stopping time with $T < \infty$ almost surely and $E[|X_T|] < \infty$, then $E(X_T) = E(X_0)$.

Fact: If there exists some $C < \infty$ such that $E(X_n^2) < C$ for each *n*, then the sequence is uniform integrable.

For example, let

$$
Z_j = \begin{cases} 1 & w.p. \frac{1}{2} \\ -1 & w.p. \frac{1}{2} \end{cases}
$$

and define

$$
X_n = \sum_{j=1}^n \frac{1}{j} Z_j
$$

where the Z_j are i.i.d., thus $E(X_n) = 0$. Then

$$
E(X_n^2) = \text{Var}(X_n) = \sum_{j=1}^n \text{Var}\left(\frac{1}{j}Z_j\right) = \sum_{j=1}^n \frac{1}{j^2} \le \sum_{j=1}^\infty \frac{1}{j^2} < \infty
$$

so X_n is uniform integrable.

3.4 Wald's Theorem

Wald's Theorem: If $X_n = \sum_{i=1}^n Z_i$ where Z_i are i.i.d. with finite mean m, T is a stopping time for X_n such that $E(T) < \infty$, then $E(X_T) = mE(T)$.

By the optional stopping lemma, $E[X_{n \wedge T} - m(n \wedge T)] = 0$ for all *n* (where $n \wedge T = \min(n, T)$). This implies that

$$
\lim_{n \to \infty} E(n \wedge T) = E(T) < \infty
$$

thus

$$
|E(X_{n\wedge T}) - E(X_T)| \le E\left[\sum_{m=n+1}^T |Z_m| 1_{T>n}\right]
$$

=
$$
E\left[\sum_{m=n+1}^\infty |Z_m| 1_{T \ge m}\right]
$$

=
$$
\sum_{m=n+1}^\infty E[|Z_m| 1_{T \ge m}]
$$

Since the event ${T \geq m}$ is determined by Z_1, \ldots, Z_{m-1} , and thus independent with Z_m , then

$$
E[|Z_m|1\!\!1_{T\geq m}] = E[|Z_m|]P(T\geq m)
$$

Thus,

$$
\sum_{n=n+1}^{\infty} E[|Z_m|1_{T \ge m}] \le E[|Z_1|] \sum_{m=n+1}^{\infty} P(T \ge m)
$$

However, since $\sum_{m=1}^{\infty} P(T \ge m) = E(T) < \infty$, then $\sum_{m=n+1}^{\infty} P(T \ge m)$ converges to 0. So,

$$
|E(X_{n\wedge T}) - E(X_T)| \to 0
$$

3.5 Martingale Convergence

m=*n*+1

Martingale Convergence Theorem: For a martingale $(M_n)_n$, if $E[|M_n|] \leq C < \infty$ almost surely, then $M_n \to M_\infty$ almost surely where M_∞ is some random variable.

- Note that $E[|M_n|] \leq C$ can be replaced by one of two options:
	- 1. $M_n \geq C$ for some $C \in \mathbb{R}$
	- 2. $M_n \leq C$ for some $C \in \mathbb{R}$

For example, let $(X_n)_n$ be a simple random walk and define stopping time $T = \inf\{t \geq 0:$ $X_t = -1$ } with $T < \infty$ almost surely. Define $Y_n = X_{n \wedge T}$, so Y_n is a martingale. Furthermore, we know that $Y_n \geq -1$ almost surely by definition of *T*. So, by the Martingale Convergence Theorem, Y_n converges almost surely to some Y_∞ . In fact, $Y_\infty = -1$ almost surely. Note, however, that $E[Y_\infty] \neq E[Y_0]$.

<u>Fact:</u> If $(X_n)_{n\geq 0}$ is a martingale and is uniform integrable with $E[|X_\infty|] < \infty$, then $E[X_\infty] =$ $E[X_0]$.

• Uniform integrable suffices as an assumption for the martingale convergence theorem since there must exist some K_1 such that

$$
E[|X_n|] \le E[|X_n| \mathbb{1}_{|X_n| > K_1}] + E[|X_n| \mathbb{1}_{|X_n| \le K_1}] \le K_1 + 1 < \infty
$$

Suppose $(X_n)_n$ is an irreducible Markov chain. A function f is **harmonic** if

$$
f(x) = \sum_{y \in S} p(x, y) f(y)
$$

When *f* is integrable, $(f(X_n))_n$ forms a martingale. Let *T* be the hitting time of $Z \in S$. Then, $M_n := f(X_{n \wedge T})$ is also a martingale.

Fact: If *f* is harmonic and bounded, and *P* (the Markov transition kernel) is a recurrent, then *f* is constant.

Proof. Since recurrent, then $P(T < \infty) = 1$. As defined above, $(M_n)_{n \geq 0}$ is a uniformly bounded martingale, so $M_n \to M_\infty$ almost surely. So,

$$
E[M_n] = E[M_\infty] = f(Z)
$$

thus $f(x) = E[M_0]$, which is constant.

In the case of transience, fix $Z \in S$. Then

$$
f(x) := \begin{cases} P_x(T_z < \infty) = f_{xz} & x = z \\ 1 & x = z \end{cases}
$$

From the *f*-expansion, *f* is harmonic.

3.6 Branching Processes

Let X_n be the number of individuals who are present at time *n*. Start with $X_0 = a$ for some $0 < a < \infty$. At time *n*, each of the X_n individuals creates a random number of offspring to appear at time $n + 1$. The number of offspring of each individual is $\stackrel{iid}{\sim} \mu$ where μ is the offspring distribution on $\{0,1,\ldots\}$. Thus, $X_{n+1} = Z_{n,1} + Z_{n,2} + \cdots + Z_{n,X_n}$ where $(Z_{n,i})_{i=1}^{X_n} \stackrel{iid}{\sim} \mu$. X_n is a Markov chain.

$$
E[X_{n+1} | \mathcal{F}_n] = \sum_{i=1}^{X_n} E[Z_{n,i} | \mathcal{F}_n] = X_n E_\mu[Z] =: X_n m
$$

Thus, $Y_n = m^{-1}X_n$ forms a martingale.

If $m < 1$, then $E[X_n] = m^n E[X_0] \to 0$ as $n \to \infty$, so $X_n \stackrel{p}{\to} 0$. This implies that extinction is certain if $m < 1$.

If $m > 1$, then $E[X_n] = m^n E[X_0] \to \infty$. This means that $P(X_n \to \infty) > 0$, so the probability of flourishing exists. Assuming $\mu_0 > 0$, $P(X_n \to 0) > 0$ still. So, $P(X_n \to \infty) \leq 1 - P(X_n \to \infty)$ 0 \lt 1. Thus, at $m > 1$, extinction and flourishing are both possible.

If $m = 1$, assuming $\mu_1 < 1$, then $E(X_0) = E(X_n) = a$, so X_n is a martingale. By the Martingale Convergence Theorem, $X_n \to X_\infty$ almost surely since $X_n \geq 0$. Since $X_n \in \mathbb{Z}$, then there exists some $T < \infty$ such that $X_n = X_\infty$ for all $n \geq T$. Thus, the only logical solution is $X_n \to 0$ almost surely.

4 Brownian Motion

4.1 Brownian Motion Definitions

Definition. A continuous process $(B_t)_{t>0}$ is Brownian motion if it satisfies the following:

- 1. $B_0 = 0$
- 2. $B_t \sim \mathcal{N}(0,t)$
- 3. Independent normal increments: For $t > s$, $B_t B_s \sim \mathcal{N}(0, t s)$ and is independent with *B^s*
- 4. $Cov(B_t, B_s) = min(s, t)$
- 5. The mapping $t \mapsto B_t$ is continuous

Fact: Brownian motion is Markov.

This is due to the **strong Markov property:** $(B_t - B_s)_{t \geq s}$ is a Brownian motion and independent of its past.

4.1.1 Stopping Times in a Continuous-Time Case

Definition. *T* is a stopping time if the event ${T \le t}$ is determined by \mathscr{F}_t (i.e.: by $(B_s)_{0 \le s \le t}$)

<u>Fact:</u> If *T* is a stopping time with $P(T > \infty) < 1$, then $(B_{t+T} - B_t)_t$ is a Brownian motion independent of $(B_s)_{0 \leq s \leq t}$.

4.2 Reflection principle

Let $T = \inf\{t : B_t = 1\}$. What is $P(T \le 1)$? We know at time $t = 1$, either

- $B_t \leq 1$
- $B_t > 1$ (has already hit 1)

This means

$$
P(B_1 \ge 1) = P(T \le 1)P(B \ge 1 | T \le 1)
$$

 $P(B_1 \geq 1)$ is computable, and by the strong Markov property, $(B_t-1)_{t\geq T}$ is a Brownian motion. Conditionally on $(B_t)_{0 \leq t \leq T}$,

$$
P(B_1 - 1 \ge 0 \mid (B_t)_{0 \le t \le T}, T \le 1) = P(N(0, 1 - t) \ge 0) = \frac{1}{2}
$$

Thus,

$$
P(T \le 1) = 2P(B_1 \ge 1) = 2\int_1^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx
$$

since $B_1 \sim \mathcal{N}(0, 1)$. This implies the **Reflection Principle**. **Reflection Principle:** For a stopping time $T_a = \inf\{t : B_t = a\}$,

$$
P(T_a \le t) = 2P(B_t \ge a) = 2\int_a^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx = P\left(\max_{0 \le s \le t} B_s \ge a\right)
$$

4.3 Brownian Motion as a Martingale

Fact: Brownian motion is a martingale.

To see this, we know $E(|B_t| < \infty)$ and $E[B_t | \mathcal{F}_s] = B_s$ for all $0 \le s < t$ because $B_t =$ $B_s + (B_t - B_s)$, so $B_t | B_s \sim \mathcal{N}(B_s, t - s)$.

Using this fact, we can also apply the Optional Stopping Theorem and Martingale Convergence Theorem.

For example, let $a, b > 0$ and $T = \inf\{t \ge \theta : B_t = -a \text{ or } B_t = b\}$. What is $P(B_t = -a)$?

We know $(B_t)_t$ is a martingale and is bounded up to time *T* because $|B_t| \mathbb{1}_{T \geq t} \leq \max(a, b)$. Thus, by the Optional Stopping Theorem, $E[B_T] = E[B_0] = 0$. However, we also know that $E[B_T] = -aP(B_T = -a) + bP(B_T = b)$, and $P(B_T = -a) + P(B_T = b) = 1$, thus $P(B_T = -a)$ $-a) = \frac{b}{a+b}.$ What is $E(T)$?

Let $Y_t = B_t^2 - t$. For $0 \le s \le t$

$$
E[B_t^2 | \mathcal{F}_t] = E[B_t^2 + (B_t - B_s)^2 + 2B_s(B_t - B_s) | \mathcal{F}_s] = B_s^2 + (t - s)
$$

thus Y_t is a martingale bounded up to time T . By the Optional Stopping Theorem,

$$
0 = E[B_T^2 - T] = -E[T] + P(B_T = -a)a^2 + P(B_T = b)b^2
$$

so $E(T) = ab$.

4.4 Zero Set of Brownian Motion

Scaling Properties: If $(B_t)_t$ is a standard Browninan motion, then

- 1. If $a > 0$ and $Y_t = a^{-\frac{1}{2}}B_{at}$, then Y_t is also a Brownian motion
- 2. If $Y_t = tB_{\frac{1}{t}}$, then Y_t is also a Brownian motion

5 Stochastic Calculus

5.1 Stochastic Integration With Respects to Brownian Motion

The goal: To define

$$
Z_t = \int_0^t Y_s dB_s
$$

where B_s is a Brownian motion. Think of B_s as a gambling game and Y_s is the amount bet at time *s*. There are 3 important properties to know for Z_t :

- 1. Z_t is linear
- 2. Martingale Property: Z_t is a martingale. In particular, $E(Z_t) = 0$.
- 3. Itô's isometry: $E[Z_t^2] = \int_0^t E[Y_s^2] ds$

5.2 Itˆo's Calculus

Note that for stochastic integrals the FTC does **not** hold:

$$
\int_0^t B_s dB_s \neq \frac{1}{2}(B_t^2 - B_0^2)
$$

since the LHS has expectation 0 but RHS has expectation $\frac{t^2}{2}$ $rac{t^2}{2}$. **Itô's Formula I:** If $f \in C^2$ and B_t is a standard Brownian motion, then

$$
f(B_t) - f(B_0) = \int_0^t f'(B_s) \, dB_s + \frac{1}{2} \int_0^t f''(B_s) \, ds
$$

Itô's Formula implies

$$
\left(f(B_t) - f(B_0) - \frac{1}{2} \int_0^t f''(B_s) \, ds\right)_{t \ge 0}
$$

is a martingale.

5.2.1 Extensions of Itô's Formula

Suppose

$$
dZ_t = X_t dt + Y_t dB_t \tag{1}
$$

Then for some $f \in C^2$,

$$
df(Z_t) = f'(Z_t)dZ_t + \frac{1}{2}f''(Z_t)Y_t^2dt = f'(Z_t)X_tdt + f'(Z_t)Y_tdt + \frac{1}{2}f''(Z_t)Y_t^2dt
$$

Definition. The quadratic variation of Z_t is

$$
\langle Z \rangle_t = \lim_{n \to \infty} \sum_{j=0}^{n-1} \left[Z_{\frac{j+1}{n}t} - Z_{\frac{j}{n}t} \right]^2
$$

Thus,

$$
\langle Z\rangle_t=\int_0^t Y_s^2\,ds
$$

This implies that

$$
\int_0^t Y_s^2 f''(Z_s) ds = \int_0^t f''(Z_s) d\langle Z \rangle_s
$$

Thus, we get **Itô's Formula II:** If $f \in C^2$ and Z_t satisifes [\(1\)](#page-20-0), then

$$
f(Z_t) - f(Z_0) = \int_0^t f'(Z_s) dZ_s + \frac{1}{2} \int_0^t f''(Z_s) d\langle Z \rangle_s
$$

=
$$
\int_0^t f'(Z_s) Y_s dB_s + \int_0^t \frac{1}{2} f''(Z_s) Y_s^2 + f'(Z_s) X_s ds
$$

In differential form,

$$
df(Z_t) = f'(Z_t)Y_t dB_t + f'(Z_t)X_t dt + \frac{1}{2}f''(Z_t)Y_t^2 dt
$$

The **product rule** is

$$
d(Z_t^{(1)} Z_t^{(2)}) = Z_t^{(1)} dZ_t^{(2)} + Z_t^{(2)} dZ_t^{(1)} + d\langle Z^{(1)}, Z^{(2)}\rangle_t
$$

where

$$
\langle Z^{(1)}, Z^{(2)} \rangle_t = \lim_{n \to \infty} \sum_{j=0}^{n-1} \left(Z^{(1)}_{\frac{j+1}{n}t} - Z^{(1)}_{\frac{j}{n}t} \right) \left(Z^{(2)}_{\frac{j+1}{n}t} - Z^{(2)}_{\frac{j}{n}t} \right)
$$

If both $Z_t^{(1)}$ $Z_t^{(1)}$ and $Z_t^{(2)}$ $t^{(2)}$ satisfy [\(1\)](#page-20-0) respectively, then

$$
\langle Z^{(1)}, Z^{(2)} \rangle_t = \int_0^t Y_s^{(1)} Y_s^{(2)} ds
$$

Itô's Formula III: If $f(t, x)$ is C^1 in t , C^2 in x , and Z_t satisfies [\(1\)](#page-20-0), then

$$
\partial f(t, Z_t) = \partial_t f(t, Z_t) dt + \partial_x f(t, Z_t) dZ_t + \frac{1}{2} \partial_x^2 f(t, Z_t) d\langle Z \rangle_t
$$

6 Other Processes

6.1 Poisson Processes

Consider the positive real line and suppose a sequence of marked points exist on the line. Let τ_n be the time between the $n-1$ and n th mark and let $T_n = \tau_1 + \ldots + \tau_n$ be the arrival time of the *n*th mark. Let $N(t)$ be the number of marked points on [0, *t*], thus $N(t) = \max\{n \geq 0 : T_n \leq t\}.$ If we suppose $\tau_n \sim \text{Exponential}(\lambda)$, then $N(t)$ is a *Poisson process*. If $X \sim \text{Binomial}(n, p)$ where $p = \frac{\lambda}{n}$ $\frac{\lambda}{n}$, then as $n \to \infty$,

$$
P(X = k) = {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}
$$

As a fact, $N(t) \sim \text{Poisson}(\lambda t)$.

Proof. Let $S_n = \sum_{t=1}^n T_t$ and let f_{S_n} be the density of S_n . Since the $T_1, \ldots, T_n \stackrel{iid}{\sim}$ Exponential(λ), then

$$
f_{S_n}(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} \quad \forall t
$$

So,

$$
P(N(t) = n) = P(S_n \le t \le S_{n+1})
$$

=
$$
\int_0^t f_{S_n}(s)P(T_{n+1} > t - s) ds
$$

=
$$
\int_0^t \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda (t-s)} ds
$$

=
$$
e^{-\lambda t} \frac{(\lambda t)^n}{n!}
$$

thus $N(t) \sim \text{Poisson}(\lambda t)$.

Another fact: $(N(t))_{t\geq0}$ has independent Poisson increments. This means that if $t_0 < t_1 <$ $\cdots < t_n$, then $N(t_i) - N(t_{i-1}) \sim \text{Poisson}(\lambda(t_i - t_{i-1}))$ and are all independent.

Definition. A Poisson process of intensity $\lambda > 0$ is a collection $\{N(t)\}_{t\geq 0}$ of non-decreasing integer-valued random variables satisfying

- 1. $N(0) = 0$
- 2. $N(t) \sim \text{Poisson}(\lambda t)$ for all $t \geq 0$
- 3. *N*(*t*) has independent Poisson increments

Generalizing, let *A* be some subset of \mathbb{R}^n and let $N(A)$ be the number of marked points in *A*. Then

$$
N(A) \sim \text{Poisson}\left(\int_A \lambda(x)dx\right)
$$

defines the Poisson process, and for all disjoint *A, B*, *N*(*A*) and *N*(*B*) are independent.

Proposition. As $h \to 0$,

- (i) $P(N(t+h) N(t) = 1) = \lambda h + o(h)$
- (ii) $P(N(t+h) N(t) \geq 2) = o(h)$

Fact: Any stochastic process with independent Poisson increments and satisfying (i) and (ii) above is a Poisson process with rate λ .

Superposition property: If $(N_1(t))_{t>0}$ and $(N_2(t))_{t>0}$ are independent Poisson processes with intensity λ_1 and λ_2 respectively, then $(N_1(t) + N_2(t))_{t>0}$ is a Poisson process with intensity $\lambda_1 + \lambda_2$.

Thinning property: Let $(N(t))_{t>0}$ be a Poisson process with intensity λ . Suppose each arrival is independently of type *i* with probability p_i for all *i* with $\sum_i p_i = 1$. Let $N_i(t)$ be the number of arrivals of type *i* up to time *t*. Then, then $(N_i(t))_{t\geq 0}$ are all independent Poisson processes with intensity λp_i .

Claim. Conditionally on $N(t) = N$, the number of marked points is ^{*iid*} Uniform[0*, t*].

6.2 Continuous-time Discrete-space Markov Processes

Definition. A continuous-time Markov process on a countable (discrete) state space *S* is a collection $\{X(t)\}_{t\geq0}$ of random variables such that

$$
P(X_0 = i_0, X_{t_1} = i_1, \dots, X_{t_n} = i_n) = v_{i_0} p_{i_0 i_1}^{(t_1)} p_{i_1 i_2}^{(t_2 - t_1)} \cdots p_{i_{n-1} i_n}^{(t_n - t_{n-1})}
$$

for all $i_0, ..., i_n \in S$ and times $0 < t_1 < t_2 < ... < t_n$.

• A Poisson process with intensity λ is a continuous-time discrete-space Markov process with transition probabilities

$$
p_{ij}^{(t)} = \begin{cases} 0 & j < i \\ \frac{e^{-\lambda t} (\lambda t)^{j-i}}{(j-i)!} & j \ge i \end{cases}
$$

A "standard Markov process" is characterized by

$$
\lim_{t \to \infty} p_{ij}^{(t)} = p_{ij}^{(0)}
$$

The characteristics of discrete-time MCs apply here:

Definition. A generator of a standard Markov procss is

$$
g_{ij} := \lim_{t \to 0} \frac{p_{ij}^t - p_{ij}^{(0)}}{t}
$$

The idea is if *t* is small, then $P^{(t)} \approx I + tG$ where $G = (g_{ij})_{i,j \in S}$. Properties:

- $g_{ii} = \lim_{t \to 0} \frac{p_{ii}^{(t)} 1}{t} \le 0$
- $g_{ij} \geq 0$
- $\sum_{j \in S} g_{ij} = 0$

•
$$
-g_{ii} = \sum_{\substack{j \in S \\ j \neq i}} g_{ij}
$$

Theorem (Continuous-time Transitions Theorem)**.**

$$
P^{(t)} = \exp(tG) := I + tG + \frac{t^2 G^2}{2!} + \cdots
$$

To compute $P^{(t)}$: suppose *G* is diagonalizable, so $G = P\Lambda P^{-1}$. Then

$$
\exp(tG) = \sum_{n=0}^{\infty} \frac{t^n G^n}{n!}
$$

$$
= P\left(\sum_{n=0}^{\infty} t^n \Lambda^n\right) P^{-1}
$$

$$
= P \text{diag}[e^{t\lambda_1}, \dots] P^{-1}
$$

Definition. $(\pi_i)_{i \in S}$ is a stationary distribution if $\pi G = 0$ (or equivalently, $\pi P^{(t)} = \pi$).

• $\sum_{i \in S} \pi_i g_{ij} = 0$

Definition. A Markov process is reversible wrt $(\pi_i)_{i \in S}$ if

$$
\pi_i g_{ij} = \pi_j g_{ji}
$$

Note that reversible implies stationary since $\sum_{j} g_{ij} = 0$.

Theorem. If a Markov process is irreducible and has stationary distribution π , then

$$
\lim_{t \to \infty} p_{ij}^{(t)} = \pi_j
$$

for all $i, j \in S$.

6.2.1 Constructing continuous-time Markov processes

Given a generator $(g_{ij})_{ij}$, sample the times τ_i from

$$
\text{Time} = \begin{cases} \tau_i \sim \text{Exponential}(-g_{ij}) & g_{ij} > 0 \\ \text{Absorbing state} & g_{ij} = 0 \end{cases}
$$

Define the next-step transitions as

$$
\tilde{p}_{ij} = \begin{cases}\n\frac{g_{ij}}{-g_{i}i} & j \neq i \\
0 & \text{otherwise}\n\end{cases}
$$

A continuous-time Markov process with generator *G* is equal to in distribution to the process above.