STA437 Notes

Ian Zhang

July 29, 2024

Contents

1	\mathbf{Ma}	trix Al	lgebra and Random Vectors	
	1.1	Vector	rs	
		1.1.1	Vector Spaces	
		1.1.2	Inner Product Spaces	
		1.1.3	Length	
		1.1.4	Angle	
		1.1.5	Projections	
		1.1.6	Cauchy-Schwarz Inequality	
	1.2	Matri	ces	
		1.2.1	Properties of Matrices	
		1.2.2	Orthogonal Matrices	
		1.2.3	Eigenvalues/Eigenvectors	
		1.2.4	Symmetric Matrices	
		1.2.5	Definite Matrices	
		1.2.6	Square Root Matrix	
		1.2.7	Extended Cauchy-Schwarz Inequality	
		1.2.8	Idempotence	
		1.2.9	Orthogonal Projection Matrices	
	1.3	Rando	om Vectors	
		1.3.1	Expected Value	
		1.3.2	Variance-Covariance Matrix	
		1.3.3	Correlation Matrix	
		1.3.4	Standard Deviation Matrix	
		1.3.5	Mean/Covariance of Linear Combinations of Random Variables .	1
		1.3.6	Partitioning Σ and μ	1

2	Sampling Geometry and Random Sampling						
	2.1	Random Samples					
	2.2	Descriptive Statistics	11				
		2.2.1 Sample Mean as a Projection	12				
		2.2.2 Deviation Vectors	13				
	2.3	Sample Mean, Covariance, and Correlation as Matrix Operations					
	2.4	Sample Values of Linear Combinations of Random Variables					
		2.4.1 Sampling Distributions of Estimators	15				
	2.5	Generalized Variance	15				
		2.5.1 Other Measures of Generalized Variance	16				
3	Mu	Multivariate Normal Distribution 1					
	3.1	Multivariate Normal Density	16				
		3.1.1 Bivariate Normal Distribution	17				
	3.2	Key Properties of Multivariate Normal Distribution	17				
		3.2.1 Property 1	17				
		3.2.2 Property 2	17				
		3.2.3 Property 3	18				
		3.2.4 Property 4	18				
	3.3	Constant Probability Density Contours	19				
	3.4	Distribution of $(X - \mu)^T \Sigma^{-1} (X - \mu)$					
	3.5	Sampling from the Multivariate Normal Distribution and MLE					
		3.5.1 Multivariate Normal Likelihood	19				
4	Line	ear Regression	20				
	4.1	Least Squares Estimation	20				
		4.1.1 Univariate	20				
		4.1.2 Multivariate	21				
		4.1.3 Sampling Properties of the LSE	23				
	4.2	Sum of Squares Decomposition	23				
5	Pri	ncipal Component Analysis	24				
	5.1	PCA Formulation					
	5.2	Total Population Variance	25				
	5.3	Sample Variance by PC	25				

1 Matrix Algebra and Random Vectors

1.1 Vectors

A vector x with p elements is a $p \times 1$ matrix

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}^T$$

1.1.1 Vector Spaces

A vector space V over a field \mathbb{F} is a set with 2 operators that satisfy certain axioms.

1.1.2 Inner Product Spaces

An inner product of vectors in a vector space V is a mapping

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

The **dot product** is defined as

$$\langle x, y \rangle = x^T y = \sum_{i=1}^p x_i y_i = y^T x$$

1.1.3 Length

The length of a vector x is L_x , where

$$L_x = \sqrt{x^T x} = \sqrt{\sum_{i=1}^p x_i^2} \qquad L_{cx} = |c| \sqrt{L_x}$$

where c is a constant. If we choose $c = L_x^{-1}$, then cx is the unit vector with length 1 in the direction of x since c > 0.

1.1.4 Angle

Suppose the angle between $x, y \in \mathbb{R}^2$ is θ . Then

$$\cos(\theta) = \frac{\langle x, y \rangle}{L_x L_y}$$

Thus if x, y are perpendicular,

$$\cos(\theta) = 0 \implies x^T y = 0$$

since L_x and L_y are nonzero.

1.1.5 Projections

The projection of x onto y has length

$$L_x|\cos(\theta)| = \left| \frac{\langle x, y \rangle}{L_y} \right|$$

This vector has direction y, so the projection of x onto y is

$$\frac{x^T y}{y^T y} y$$

1.1.6 Cauchy-Schwarz Inequality

Let $x, y \in \mathbb{R}^p$. Then

$$(x^T y)^2 \le (x^T x)(y^T y) = L_x^2 L_y^2$$

with equality holding iff x = cy for some $c \in \mathbb{R}$.

Proof. If either x, y are zero, then LHS = RHS = 0. Suppose $x, y \neq 0$ and consider x - cy. If $x - cy \leq 0$, then

$$0 < (x - cy)^{T}(x - cy)$$

= $x^{T}x - 2cx^{T}y + c^{2}y^{T}y$

Since $y^Ty > 0$, then the quadratic in $c x^Tx - 2cx^Ty + c^2y^Ty$ has no real roots, thus $4(x^Ty)^2 - 4(x^Tx)(y^Ty) \le 0$, so

$$(x^T y)^2 \le (x^T x)(y^T y)$$

1.2 Matrices

Definition. The rank of a matrix A is the number of independent rows/columns of A.

• $\operatorname{rank}(A_{n \times p}) \le \min(n, p)$

1.2.1 Properties of Matrices

•
$$(AB)^T = B^T A^T$$

•
$$(A^{-1})^T = (A^T)^{-1}$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

- $\operatorname{rank}(A) = \operatorname{rank}(A^T) = \operatorname{rank}(AA^T) = \operatorname{rank}(A^TA)$
- $A_{n \times n}$ is invertible iff rank(A) = n
- det(AB) = det(A) det(B)
- $det(A) = det(A^T)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $\det(cA_{k\times k}) = c^k \det(A_{k\times k})$
- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A)$ where P is invertible and of same dimension as A

1.2.2 Orthogonal Matrices

Definition. An orthogonal matrix $Q \in \mathbb{R}^{k \times k}$ is characterized by

$$QQ^T = Q^TQ = I$$

or equivalently, $Q^T = Q^{-1}$.

A matrix Q is orthogonal if all its rows have length 1 and are mutually orthogonal.

Proposition. If Q is orthogonal, then $det(Q) = \pm 1$.

Proof.
$$det(Q) = det(Q^T) = det(Q^{-1}) = \frac{1}{det(Q)} \implies |det(Q)| = 1.$$

1.2.3 Eigenvalues/Eigenvectors

An eigenvector x of a matrix A with eigenvalue λ satisfies

$$Ax = \lambda x$$

where $x \neq 0$. To solve for λ , we solve $\det(A - \lambda I) = 0$.

Properties: For arbitrary $A \in \mathbb{R}^{k \times k}$,

1.
$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

2.
$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

3. $P^{-1}AP$ and P have the same eigenvalues

1.2.4 Symmetric Matrices

Definition. A square matrix A is symmetric if $A = A^T$.

Properties: For a symmetric $A_{k\times k}$, let

$$(\lambda_1, e_1), (\lambda_2, e_2), \cdots, (\lambda_k, e_k)$$

be its pairs of eigenvalues and eigenvectors, which are assumed to be normalized (i.e., $L_{e_i} = 1$ for all i). Then

- 1. $\lambda_k \in \mathbb{R}$
- 2. All the eigenvectors are mutually orthogonal, or equivalently, $\langle e_i, e_j \rangle = 0$

The spectral decomposition for symmetric matrices is the matrix

$$A = P\Lambda P^T = \sum_{i=1}^k \lambda_i e_i e_i^T$$

where

$$P = \begin{bmatrix} e_1 & e_2 & \cdots & e_k \end{bmatrix}$$

$$\Lambda = \operatorname{diag} \begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \end{bmatrix}$$

• $A^n = P\Lambda^n P$ where

$$\Lambda^n = \operatorname{diag} \begin{bmatrix} \lambda_1^n & \cdots & \lambda_k^n \end{bmatrix}$$

1.2.5 Definite Matrices

Definition. A symmetric matrix $A_{k \times k}$ is nonnegative definite if for all $x \in \mathbb{R}^k$,

$$x^T A x > 0$$

If so, we say $A \succeq 0$.

Definition. A symmetric matrix $A_{k\times k}$ is positive definite if for all $x\neq 0$,

$$x^T A x > 0$$

If so, we say $A \succ 0$.

Proposition. A symmetric matrix A is positive definite iff all the eigenvalues of A are strictly positive.

• Nonnegative definite if all eigenvalues are nonnegative

Let A be a $k \times k$ positive definite matrix, thus $A = P\Lambda P^T$. A's inverse is the matrix

$$A^{-1} = P\Lambda^{-1}P^T$$

where

$$\Lambda^{-1} = \operatorname{diag} \begin{bmatrix} \frac{1}{\lambda_1} & \cdots & \frac{1}{\lambda_k} \end{bmatrix}$$

1.2.6 Square Root Matrix

Definition. The square root matrix of a positive definite matrix A is

$$A^{\frac{1}{2}} = P\Lambda^{\frac{1}{2}}P^T$$

Properties:

- $A^{\frac{1}{2}}$ is symmetric
- $A^{\frac{1}{2}}A^{\frac{1}{2}} = A$
- $A^{\frac{1}{2}}A^{-\frac{1}{2}} = A^{-\frac{1}{2}}A^{\frac{1}{2}} = I$

1.2.7 Extended Cauchy-Schwarz Inequality

Let $x, y \in \mathbb{R}^p$ and B be a $p \times p$ positive definite matrix. Then

$$(x^T y)^2 \le (x^T B x)(y^T B^{-1} y)$$

with equality holding iff $x = cB^{-1}y, c \in \mathbb{R}$.

Proof. If either x or y is zero, then LHS = RHS = 0. Suppose $x, y \neq 0$. Then

Applying the C-S inequality to $B^{\frac{1}{2}}x$ and $B^{-\frac{1}{2}}y$ proves the claim.

1.2.8 Idempotence

Definition. A matrix A is idempotent if $A^2 = A$.

• If A is idempotent, then so is I - A

1.2.9 Orthogonal Projection Matrices

Definition. A square matrix A is an orthogonal projection matrix if

$$A^2 = A = A^T$$

Note that in general, a projection matrix A is idempotent and symmetric. Let P be an orthogonal projection matrix. Then

$$\langle x, Py \rangle = \langle Px, y \rangle = \langle Px, Py \rangle$$

To show the first equality,

$$\langle x, Py \rangle = x^T Py = (P^T x)^T y = (Px)^T y = \langle Px, y \rangle$$

To show the second, we use the first to show

$$\langle Px, Py \rangle = \langle x, P^2y \rangle = \langle x, Py \rangle$$

1.3 Random Vectors

Definition (Random Vectors). A random vector is a vector with random variables as elements.

1.3.1 Expected Value

The expected value of a random vector X is vector

$$\mu = E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_p) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix}$$

If A, B are deterministic matrices (constant matrices), then

$$E(AX + B) = AE(X) + B$$

1.3.2 Variance-Covariance Matrix

The variance-covariance matrix

$$\Sigma = \operatorname{Cov}(X) = E[(X - \mu)(X - \mu)^{T}] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{12} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1p} & \sigma_{2p} & \cdots & \sigma_{pp} \end{bmatrix}$$

where

$$\sigma_{ii} = \text{Cov}(X_i, X_i)$$

Since covariance is symmetric, then

$$Cov(X_i, X_j) = Cov(X_j, X_i)$$

 Σ is symmetric. By definition,

$$\sigma_{ij} = \sum_{x_i} \sum_{x_j} (x_i - \mu_i)(x_j - \mu_j) p_{ij}(x_i, x_j) = \sigma_{ji}$$

1.3.3 Correlation Matrix

The correlation matrix is a matrix

$$\rho = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{12} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1p} & \rho_{2p} & \cdots & 1 \end{bmatrix}$$

where

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}}}$$

is the correlation between X_i and X_j . Since correlation is proportionate to covariance, which is symmetric, then $\rho_{ij} = \rho_{ji}$ for all i, j, thus ρ is symmetric.

1.3.4 Standard Deviation Matrix

The standard deviation matrix is a matrix

$$V^{\frac{1}{2}} = \begin{bmatrix} \sqrt{\sigma_{11}} & 0 & \cdots & 0 \\ 0 & \sqrt{\sigma_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\sigma_{pp}} \end{bmatrix}$$

It is worth noting that

$$\Sigma = V^{\frac{1}{2}} \rho V^{\frac{1}{2}} \implies \rho = V^{-\frac{1}{2}} \Sigma V^{-\frac{1}{2}}$$

In the univariate case, we have

$$Var(X) = E(X^2) - \mu^2$$

In the multivariate case,

$$\Sigma = E[(X - \mu)(X - \mu)^T] = E[XX^T] - \mu\mu^T$$

1.3.5 Mean/Covariance of Linear Combinations of Random Variables

Let $c^T = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix}$ be a vector of constants and consider the linear combination $c^T X$. Then

$$E(c^T X) = c^T E(X)$$
 $Var(c^T X) = c^T \Sigma c$

If C is a $q \times p$ deterministic matrix, then if we define the vector

$$Z_{q \times 1} = C_{q \times p} X_{p \times 1}$$

as the collection of q linear combinations of the X_i , then

$$\mu_Z = C\mu_X \qquad \Sigma_Z = C\Sigma_X C^T$$

Proof. The case of μ_Z is trivial by definition of expectation. To show Σ_Z ,

$$\Sigma_Z = E[(Z - \mu_Z)(Z - \mu_Z)^T]$$

$$= E[(CX - C\mu_X)(CX - C\mu_X)^T]$$

$$= CE[(X - \mu_X)(X - \mu_X)^T]C^T$$

$$= C\Sigma_X C^T$$

as required.

1.3.6 Partitioning Σ and μ

Partition X into 2 groups

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_q \\ \cdots \\ X_{q+1} \\ \vdots \\ X_p \end{bmatrix} = \begin{bmatrix} X_{q\times 1}^{(1)} \\ \cdots \\ X_{(p-q)\times 1}^{(2)} \end{bmatrix}$$

Then

$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_q \\ \cdots \\ \mu_{q+1} \\ \vdots \\ \mu_p \end{bmatrix} = \begin{bmatrix} \mu_{q\times 1}^{(1)} \\ \cdots \\ \mu_{(p-q)\times 1}^{(2)} \end{bmatrix}$$

and

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \vdots & \Sigma_{12} \\ \dots & \vdots & \dots \\ \Sigma_{21} & \vdots & \Sigma_{22} \end{bmatrix}$$

where Σ_{11} is $q \times q$, Σ_{22} is $(p-q) \times (p-q)$, Σ_{12} is $q \times (p-q)$ and $\Sigma_{21} = \Sigma_{12}^T$.

2 Sampling Geometry and Random Sampling

2.1 Random Samples

Suppose

$$X = \begin{bmatrix} X_1^T \\ \vdots \\ X_n^T \end{bmatrix}$$

is a collection of n samples of size p from a joint distribution $f_X(x) = f_X(x_1, \dots, x_p)$.

2.2 Descriptive Statistics

Let x_{11}, \ldots, x_{n1} be n observations on the first variable. Then

$$\bar{x}_1 = \frac{1}{n} \sum_{i=1}^{n} x_{i1}$$

is the sample mean of the first variable, thus

$$\bar{x}_k = \frac{1}{n} \sum_{i=1}^n x_{ik}$$

is the sample mean for the kth for all $k \in \{1, ..., p\}$.

$$s_k^2 = s_{kk} = \frac{1}{n} \sum_{i=1}^n (x_{ik} - \bar{x}_k)^2$$

is the sample variance, so $\sqrt{s_{kk}}$ is the sample standard deviation.

$$s_{ik} = \frac{1}{n} \sum_{i=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)$$

is the sample covariance for $i, k \in \{1, ..., p\}$. Finally, the correlation coefficient is for $i, k \in \{1, ..., p\}$ is

$$r_{ik} = \frac{s_{ik}}{\sqrt{s_{ii}}\sqrt{s_{kk}}} = \frac{\sum_{j=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)}{\sqrt{\sum_{j=1}^{n} (x_j - \bar{x}_i)^2} \sqrt{\sum_{j=1}^{n} (x_j - \bar{x}_k)^2}}$$

With these definitions, we can define sample mean and covariance as

$$\bar{x} = \begin{bmatrix} \bar{x}_1 \\ \vdots \\ \bar{x}_p \end{bmatrix} \qquad S_n = \begin{bmatrix} s_{11} & \cdots & s_{1p} \\ \vdots & \ddots & \vdots \\ s_{1p} & \cdots & s_{pp} \end{bmatrix}$$

If we instead use

$$s_{ik} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)$$

as the sample covariance between X_i and X_p , then we can define an unbiased estimator of Σ as

$$E(S) = \Sigma \implies E(S_n) = \frac{n-1}{n} \Sigma$$

Finally, define sample correlation as

$$R = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{12} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1p} & r_{2p} & \cdots & 1 \end{bmatrix}$$

2.2.1 Sample Mean as a Projection

Consider the data

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \cdots & y_p \end{bmatrix}$$

Define the vector

$$\mathbb{1}_n^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$$

thus $\frac{1}{\sqrt{n}}\mathbb{1}_n$ has length 1.

Claim. The projection of y_i onto $\frac{1}{\sqrt{n}}\mathbb{1}_n$ is the vector $\bar{x}_i\mathbb{1}_n = \begin{bmatrix} \bar{x}_i & \bar{x}_i & \cdots & \bar{x}_i \end{bmatrix}^T$.

Proof.

$$\frac{\langle y_i, \frac{1}{\sqrt{n}}\mathbb{1}_n \rangle}{\langle \frac{1}{\sqrt{n}}\mathbb{1}_n, \frac{1}{\sqrt{n}}\mathbb{1}_n \rangle} \frac{1}{\sqrt{n}}\mathbb{1}_n = \left(\frac{1}{\sqrt{n}}\sum_{j=1}^n x_{ji}\right) \frac{1}{\sqrt{n}}\mathbb{1}_n = \frac{1}{n}\sum_{j=1}^n x_{ji}\mathbb{1}_n = \bar{x}_i\mathbb{1}_n$$

2.2.2 Deviation Vectors

For each y_i defined above, define the deviation vector

$$d_i = y_i - \bar{x}_i \mathbb{1}_n = \begin{bmatrix} x_{1i} - \bar{x}_i & \cdots & x_{ni} - \bar{x}_i \end{bmatrix}^T$$

Since $\bar{x}_i \mathbb{1}_n$ is the projection of y_i onto $\frac{1}{\sqrt{n}} \mathbb{1}_n$, then $d_i \perp \bar{x}_i \mathbb{1}_n$. Notice how by definition,

$$\langle d_i, d_i \rangle = \sum_{j=1}^{n} (x_{ji} - \bar{x}_i)^2 = (n-1)s_{ii}$$

for all $i \in \{1, ..., p\}$. This shows that the length of the deviation vectors are proportionate to the standard deviations, so if d_i is long, then the variance in that direction is *large*, and if short, then the variance is *small*.

$$L_{d_i} = \sqrt{(n-1)s_{ii}}$$

For $i \neq j$, we have

$$\langle d_i, d_j \rangle = \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j) = (n-1)s_{ij}$$

Since $\langle x, y \rangle = L_x L_y \cos(\theta)$ where θ is the angle between x and y, then this shows

$$L_{d_i}L_{d_i}\cos(\theta_{ij}) = (n-1)\sqrt{s_{ii}}\sqrt{s_{jj}}\cos(\theta_{ij})$$

By definition of sample correlation, this shows that $r_{ij} = \cos(\theta_{ij})$, or equivalently, the sample correlation between X_i and X_j is the cosine of the angle between their respective deviation vectors of their observations.

This implies that

$$S = [s_{ij}]_{ij} = \left[\frac{1}{n-1} \langle d_i, d_j \rangle\right]_{ij}$$

Additionally, the sum of the elements of a deviation vector must equal 0.

2.3 Sample Mean, Covariance, and Correlation as Matrix Operations

Paired with the definitions above, the sample mean can be rewritten as

$$\bar{x} = \frac{1}{n} X^T \mathbb{1}_n = \frac{1}{n} \begin{bmatrix} x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1p} & x_{2p} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_p \end{bmatrix}$$

Define the $n \times p$ matrix of deviations

$$X - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T X = \begin{bmatrix} x_{11} - \bar{x}_1 & x_{12} - \bar{x}_2 & \cdots & x_{1p} - \bar{x}_p \\ x_{21} - \bar{x}_1 & x_{22} - \bar{x}_2 & \cdots & x_{2p} - \bar{x}_p \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_1 & x_{n2} - \bar{x}_2 & \cdots & x_{np} - \bar{x}_p \end{bmatrix} = \begin{bmatrix} d_1 & d_2 & \cdots & d_p \end{bmatrix}$$

Claim. $I - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T$ is an orthogonal projector.

Proof. Since I and $\frac{1}{n}\mathbb{1}_n\mathbb{1}_n^T$ are symmetric, then

$$\left\langle \left(I - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T \right) x, y \right\rangle = \left\langle x, y \right\rangle - \left\langle \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T x, y \right\rangle$$
$$= \left\langle x, y \right\rangle - \left\langle x, \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T y \right\rangle$$
$$= \left\langle x, \left(I - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T \right) y \right\rangle$$

which shows symmetry. To show idempotence,

$$\left(I - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T \right)^2 = I - \frac{2}{n} \mathbb{1}_n \mathbb{1}_n^T + \left(\frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T \right)^2 = I - \frac{2}{n} \mathbb{1}_n \mathbb{1}_n^T + \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T = 1 - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T$$
 as required.

Using this matrix, we define the $p \times p$ sample covariance matrix using

$$(n-1)S = \left(X - \frac{1}{n}\mathbb{1}_n\mathbb{1}_n^TX\right)^T\left(X - \frac{1}{n}\mathbb{1}_n\mathbb{1}_n^TX\right) = X^T\left(I - \frac{1}{n}\mathbb{1}_n\mathbb{1}_n^T\right)X$$

Define the $p \times p$ standard deviation matrix

$$D_{p \times p}^{\frac{1}{2}} = \begin{bmatrix} \sqrt{s_{11}} & 0 & \cdots & 0 \\ 0 & \sqrt{s_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{s_{pp}} \end{bmatrix}$$

Then the sample correlation matrix is

$$R = D^{-\frac{1}{2}}SD^{-\frac{1}{2}}$$

where

$$D^{-\frac{1}{2}} = \left(D^{\frac{1}{2}}\right)^{-1} = \operatorname{diag}\left[\frac{1}{\sqrt{s_{11}}} \cdots \frac{1}{\sqrt{s_{pp}}}\right]$$

2.4 Sample Values of Linear Combinations of Random Variables

Consider again

$$c^T X = c_1 X_1 + \dots + c_p X_p$$

Then

Sample mean =
$$c^T \bar{x}$$

Sample variance of
$$c^T X = c^T S c$$

For a deterministic $q \times p$ matrix C, the q linear combinations $C_{q \times p} X_p$ have

Sample mean vector =
$$C\bar{x}$$

Sample covariance matrix = CSC^T

2.4.1 Sampling Distributions of Estimators

Let X_1, \ldots, X_n be random samples from a joint distribution with mean vector μ and covariance matrix Σ .

- \bar{X} is an unbiased estimator of μ with $E(\bar{X}) = \mu$
- The covariance matrix of \bar{X} is $Cov(\bar{X}) = \frac{1}{n}\Sigma$
- $E(S_n) = \frac{n-1}{n}\Sigma$ so S is an unbiased estimator of Σ

2.5 Generalized Variance

The sample covariance matrix is given by

$$S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{12} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1p} & s_{2p} & \cdots & s_{pp} \end{bmatrix}$$

which contains p variances and $\frac{p(p-1)}{2}$ covariances. To express a single value for the variation expressed by S, use

Generalized sample variance = det(S)

The generalized sample variance is proportionate to the square of the volume generated by the p deviation vectors d_1, \ldots, d_p .

$$\det(S) = (n-1)^{-p} \det \begin{bmatrix} d_1 & \cdots & d_p \end{bmatrix}$$

since $S = \left[\frac{1}{n-1}\langle d_i, d_j \rangle\right]_{ij}$. Thus, the generalized variance is 0 iff the deviation vectors are linearly dependent.

• If $n \leq p$, then det(S) = 0

2.5.1 Other Measures of Generalized Variance

Generalized variance of standardized variables = det(R)

Since
$$R = D^{-\frac{1}{2}}SD^{-\frac{1}{2}}$$
 and $\det(D^{-\frac{1}{2}}) = \prod_{i=1}^{p} \frac{1}{\sqrt{s_{ii}}}$, then
$$\det(R) = \det(D^{-\frac{1}{2}})\det(S)\det(D^{-\frac{1}{2}}) = (s_{11}s_{22}\cdots s_{pp})^{-1}\det(S)$$
 Total sample variance $= \operatorname{tr}(S) = \sum_{i=1}^{p} s_{ii}$

3 Multivariate Normal Distribution

3.1 Multivariate Normal Density

Definition. A p-dimensional random vector X has multivariate normal distribution if every linear combination of its components, c^TX has a univariate normal distribution.

If $X \sim \mathcal{N}(\mu, \sigma^2)$, the pdf is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

for $x \in \mathbb{R}$. Rewrite the exponent as

$$-\frac{(x-\mu)^2}{2\sigma^2} = -\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)$$

If $X \sim \mathcal{N}_p(\mu, \Sigma)$, the exponent is generalized to

$$-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$$

thus the pdf is

$$f(x) = \frac{1}{(2\pi)^{\frac{p}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

If $det(\Sigma) = 0$, we say X is degenerate.

If Z_1, \ldots, Z_p are independent with $Z_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, the density of

$$Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_p \end{bmatrix}$$

is
$$\mathcal{N}_p(\mu, \Sigma)$$
 with $\mu = \begin{bmatrix} \mu_1 & \cdots & \mu_p \end{bmatrix}^T$ and $\Sigma = \operatorname{diag} \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_p^2 \end{bmatrix}$

3.1.1 Bivariate Normal Distribution

If p=2, then

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix}$$

and

$$\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22}(1 - \rho_{12}^2)} \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{12} & \sigma_{11} \end{bmatrix}$$

Thus

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1 - \rho_{12}^2)}} \exp\left[-\frac{1}{2\sigma_{11}\sigma_{22}(1 - \rho_{12}^2)} \left(\frac{(x_1 - \mu_1)^2}{\sigma_{11}} + \frac{(x_2 - \mu_2)^2}{\sigma_{22}} - 2\sigma_{12}(x_1 - \mu_1)(x_2 - \mu_2)\right)\right]$$

3.2 Key Properties of Multivariate Normal Distribution

3.2.1 Property 1

If $X \sim \mathcal{N}_p(\mu, \Sigma)$, then

$$a^T X \sim \mathcal{N}(a^T \mu, a^T \Sigma a)$$

If we take $a = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$, then $a^T X = X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$. In general, the marginal distribution over the X_i is $\mathcal{N}(\mu_i, \sigma_i)$. Generalizing, if we consider the q linear combinations $A_{q \times p} X_{p \times 1}$, then

$$AX \sim \mathcal{N}_q(A\mu, A\Sigma A^T)$$

3.2.2 Property 2

All subsets of X are normally distributed. If we partition $X_{p\times 1}$ into $X_{q\times 1}^{(1)}$ and $X_{(p-q)\times 1}^{(2)}$, then $X_{q\times 1}^{(1)} \sim \mathcal{N}_q(\mu^{(1)}, \Sigma_{11})$ where Σ_{11} is $q\times q$. More precisely, if we consider

$$X = \begin{bmatrix} X_1 & \cdots & X_q & \vdots & X_{q+1} & \cdots & X_p \end{bmatrix}^T = \begin{bmatrix} X^{(1)} \\ \cdots \\ X^{(2)} \end{bmatrix}$$

We know this gives partitions such that

$$\mu = \begin{bmatrix} \mu^{(1)} \\ \dots \\ \mu^{(2)} \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \vdots & \Sigma_{12} \\ \dots & \vdots & \dots \\ \Sigma_{21} & \vdots & \Sigma_{22} \end{bmatrix}$$

Let $A = \begin{bmatrix} I_{q \times q} & \vdots & 0_{q \times (p-q)} \end{bmatrix}$. Then by property 1,

$$X^{(1)} \sim \mathcal{N}_q(A\mu, A\Sigma A^T) = \mathcal{N}_q(\mu^{(1)}, \Sigma_{11})$$

3.2.3 Property 3

Let
$$X = \begin{bmatrix} X_{q_1 \times 1}^{(1)} & \vdots & X_{q_2 \times 1}^{(2)} \end{bmatrix}^T$$
. Then $X^{(1)} \perp \!\!\!\perp X^{(2)}$ iff $\Sigma_{12} = 0_{q_1 \times q_2}$.

3.2.4 Property 4

If $X \sim \mathcal{N}_p(\mu, \Sigma)$ and $X = \begin{bmatrix} X_1 & \vdots & X_2 \end{bmatrix}^T$ with $\det(\Sigma) > 0$, then the random vector $X_1 | X_2 = x_2$, is Normal with mean

$$\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

and covariance

$$\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Proof. Define

$$A = \begin{bmatrix} I_{q \times q} & \vdots & -\Sigma_{12}\Sigma_{22}^{-1} \\ \dots & \vdots & \dots \\ 0_{(p-q)\times q} & \vdots & I_{(p-q)\times(p-q)} \end{bmatrix}$$

Then

$$A(X - \mu) \sim \mathcal{N}_p \left(0, \begin{bmatrix} \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} & \vdots & 0 \\ & \dots & \vdots & \dots \\ 0 & & \vdots & \Sigma_{22} \end{bmatrix} \right)$$

Since

$$A(X - \mu) = \begin{bmatrix} X_1 - \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} (X_2 - \mu_2) \\ & \cdots \\ & X_2 - \mu_2 \end{bmatrix}$$

and $X_1 - \mu_1 - \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2) \sim \mathcal{N}_q(0, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$, then if we condition on $X_2 = x_2$, we have $X_1 - \mu_1 - \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2) \sim \mathcal{N}_q(0, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$ as well. By property 1, we have

$$X_1|X_2 = x_2 \sim \mathcal{N}_q \left(\mu_1 + \sigma_{12}\sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right)$$

as required.

3.3 Constant Probability Density Contours

Let $X \sim \mathcal{N}_p(\mu, \Sigma)$ so

$$f(x) = \frac{1}{\det(2\pi\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

The constant probability density contour is the set

$$\{x : (x - \mu)^T \Sigma^{-1} (x - \mu) = c^2\}$$

which is the surface of an ellipsoid centered at μ . This means the axes of the ellipsoid are $\pm c\sqrt{\lambda_i}e_i$ where (λ_i, e_i) are eigenvalue/eigenvector pairs of Σ for all $i \in \{1, \ldots, p\}$.

3.4 Distribution of $(X - \mu)^T \Sigma^{-1} (X - \mu)$

Let $X \sim \mathcal{N}_p(\mu, \Sigma)$ with $\det(\Sigma) > 0$. Then

$$(X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_p^2$$

Thus, the probability $1 - \alpha$ is assigned to

$$\{x: (x-\mu)^T \Sigma^{-1} (x-\mu) \le \chi_p^2(\alpha)\}$$

where $\chi_p^2(\alpha)$ is the 100 α th percentile of χ_p^2 .

3.5 Sampling from the Multivariate Normal Distribution and MLE

Theorem (Multivariate CLT). Let X_1, \ldots, X_n be independent samples from a population with mean vector μ and covariance Σ . Then

$$\sqrt{n}(\bar{X} - \mu) \stackrel{d}{\to} \mathcal{N}_p(0, \Sigma)$$

3.5.1 Multivariate Normal Likelihood

Let X_1, \ldots, X_n be random samples from $\mathcal{N}_p(\mu, \Sigma)$. Then their joint density function is

$$\prod_{j=1}^{n} \frac{1}{|\det(2\pi\Sigma)|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x_j - \mu)^T \Sigma^{-1} (x_j - \mu)\right]
= \frac{1}{|\det(2\pi\Sigma)|^{\frac{n}{2}}} \exp\left[-\frac{1}{2} \sum_{j=1}^{n} (x_j - \mu)^T \Sigma^{-1} (x_j - \mu)\right]$$

Fact: Let $A \in \mathbb{R}^{k \times k}$ be symmetric. Then

$$x^T A x = \operatorname{tr}(x^T A x) = \operatorname{tr}(A x x^T)$$

Claim.
$$\sum_{j=1}^{n} (x_j - \mu)^T \Sigma^{-1} (x_j - \mu) = \text{tr} \left[\sum_{j=1}^{n} (x_j - \mu) (x_j - \mu)^T \right]$$

Proof. By the fact above,

$$\sum_{j=1}^{n} (x_j - \mu)^T \Sigma^{-1} (x_j - \mu) = \sum_{j=1}^{n} \operatorname{tr} \left(\Sigma^{-1} (x_j - \mu) (x_j - \mu)^T \right)$$
$$= \operatorname{tr} \left(\sum_{j=1}^{n} (x_j - \mu) (x_j - \mu)^T \right)$$
by distributivity

Furthermore,

$$\sum_{j=1}^{n} (x_j - \mu)(x_j - \mu)^T = \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \mu)^T + n(\bar{x} - \mu)(\bar{x} - \mu)^T$$

Thus, the likelihood function of (μ, Σ) is

$$L(\mu, \Sigma) = \frac{1}{|\det(2\pi\Sigma)|^{\frac{n}{2}}} \exp\left[-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} \left(\sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})^T\right)\right) - \frac{n}{2} (\bar{x} - \mu)^T \Sigma^{-1} (\bar{x} - \mu)\right]$$

Optimizing this function tells us that the MLEs of μ and Σ respectively are

$$\hat{\mu} = \bar{X}$$
 $\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (X_j - \bar{X})(X_j - \bar{X})^T = \frac{n-1}{n} S$

Lemma. Given a $p \times p$ symmetric positive definite matrix B and a scalar b > 0, it follows that

$$\frac{1}{|\Sigma|^b} e^{-\operatorname{tr}\left(\Sigma^{-1}B\right)/2} \le \frac{1}{|B|^b} (2b)^{pb} e^{-bp}$$

for all positive definite $\Sigma_{p\times p}$, with equality when

$$\Sigma = \frac{1}{2b}B$$

4 Linear Regression

4.1 Least Squares Estimation

4.1.1 Univariate

Consider the model

$$Y = \beta_0 + \beta_1 Z + \varepsilon$$

By Least Squares, we want to minimize

$$S(b_0, b_1) = \sum_{j=1}^{n} (y_j - b_o - b_1 z_j)^2$$

assuming data points $(z_1, y_1), \ldots, (z_n, y_n)$ and where the b_0, b_1 are trial values of β_0, β_1 . Setting

$$\frac{\partial S}{\partial b_0} = 0 = \frac{\partial S}{\partial b_1}$$

we have

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{z}$$
 $\hat{\beta}_1 = \frac{\sum_{j=1}^n (y_j - \bar{y})(z_j - \bar{z})}{\sum_{j=1}^n (z_j - \bar{z})^2}$

where $\hat{\beta}_0, \hat{\beta}_1$ are the Least Squares Estimates of β_0, β_1 .

4.1.2 Multivariate

Consider the model

$$Y = \beta_0 + \beta_1 Z_1 + \dots + \beta_r Z_r + \varepsilon$$

From n observations on Y, the model becomes

$$Y_1 = \beta_0 + \beta_1 z_{11} + \dots + \beta_r z_{1r} + \varepsilon_1$$

$$\vdots$$

$$Y_n = \beta_n + \beta_1 z_{n1} + \dots + \beta_r z_{nr} + \varepsilon_n$$

Make the following assumptions:

- 1. $E[\varepsilon_i] = 0$
- 2. $\operatorname{Var}[\varepsilon_i] = \sigma^2$
- 3. $Cov(\varepsilon_i, \varepsilon_j) = 0$ if $i \neq j$

In matrix notation,

$$Y = Z\beta + \varepsilon$$

or equivalently,

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & z_{11} & \cdots & z_{1r} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & z_{n1} & \cdots & z_{nr} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

By the assumptions above,

- $E[\boldsymbol{\varepsilon}] = 0$
- $Cov(\varepsilon) = \sigma^2 I$

Let **b** be a trial value of β . We want to minimize

$$S(\mathbf{b}) = \sum_{j=1}^{n} (y_j - b_0 - b_1 z_{j1} - \dots - b_r z_{jr})^2 = (\mathbf{y} - \mathbf{Z}\mathbf{b})^T (\mathbf{y} - \mathbf{Z}\mathbf{b})$$

which will produce the LSE $\hat{\boldsymbol{\beta}}$.

Definition. The deviations

$$\hat{\varepsilon}_j = y_j - \hat{\beta}_0 - \hat{\beta}_1 z_{j1} - \dots - \hat{\beta}_r z_{jr}$$

are the residuals.

Note that

$$\hat{oldsymbol{arepsilon}} = oldsymbol{y} - oldsymbol{Z} \hat{oldsymbol{eta}}$$

Suppose \boldsymbol{Z} has full rank with $r+1 \leq n$.

Claim. The LSE $\hat{\beta}$ is given by

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{Z}^T \boldsymbol{Z})^{-1} \boldsymbol{Z}^T \boldsymbol{y}$$

Proof. By definition,

$$S(\boldsymbol{b}) = (\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{b})^{T}(\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{b})$$

$$= (\boldsymbol{y}^{T} - (\boldsymbol{Z}\boldsymbol{b})^{T})(\boldsymbol{y} - \boldsymbol{Z}\boldsymbol{b})$$

$$= \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{Z}\boldsymbol{b} - (\boldsymbol{Z}\boldsymbol{b})^{T}\boldsymbol{y} - (\boldsymbol{Z}\boldsymbol{b})^{T}(\boldsymbol{Z}\boldsymbol{b})$$

$$= \boldsymbol{y}^{T}\boldsymbol{y} - 2\boldsymbol{y}^{T}\boldsymbol{Z}\boldsymbol{b} - \boldsymbol{b}^{T}\boldsymbol{Z}^{T}\boldsymbol{Z}\boldsymbol{b}$$

Then taking the partial derivatives,

$$\frac{\partial S}{\partial \boldsymbol{b}} = -2\boldsymbol{Z}^T\boldsymbol{y} + 2(\boldsymbol{Z}^T\boldsymbol{Z})\boldsymbol{b} = 0 \implies \hat{\boldsymbol{\beta}} = (\boldsymbol{Z}^T\boldsymbol{Z})^{-1}\boldsymbol{Z}\boldsymbol{y}$$

Definition. The hat matrix is the matrix

$$\boldsymbol{H} = \boldsymbol{Z}(\boldsymbol{Z}^T\boldsymbol{Z})^{-1}\boldsymbol{Z}^T$$

Note that H is both idempotent and symmetric, thus H is an orthogonal projector.

It follows that

$$\hat{m{y}} = m{Z}\hat{m{eta}} = m{H}m{y}$$

where \hat{y} is the fitted value of y and satisfies $y = \hat{y} + \hat{\varepsilon}$. This implies that H projects onto the space spanned by the columns of Z, which is the set of all linear combinations

of the predictors. Additionally,

$$\mathbf{Z}^T(I - \mathbf{H}) = 0$$

Finally, the residuals $\hat{\boldsymbol{\varepsilon}} = \boldsymbol{y} - \hat{\boldsymbol{y}}$ satisfy $\boldsymbol{Z}^T \hat{\boldsymbol{\varepsilon}} = 0$, $\boldsymbol{y}^T \hat{\boldsymbol{\varepsilon}} = 0$.

4.1.3 Sampling Properties of the LSE

For $\hat{\boldsymbol{\beta}} = (\boldsymbol{Z}^T \boldsymbol{Z})^{-1} \boldsymbol{Z}^T \boldsymbol{y}$,

- $E(\hat{\boldsymbol{\beta}}) = \beta$
- $\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{Z}^T\boldsymbol{Z})^{-1}$

The residuals have properties

- $E(\hat{\boldsymbol{\varepsilon}}) = 0$
- $\operatorname{Cov}(\hat{\boldsymbol{\varepsilon}}) = \sigma^2(I \boldsymbol{H})$

4.2 Sum of Squares Decomposition

Definition. The Residual Sum of Squares (RSS) is as in

$$RSS = \sum_{j=1}^{n} (y_j - \beta_0 - \beta_1 z_{j1} - \dots - \beta_r z_{jr})^2 = \hat{\boldsymbol{\varepsilon}}^T \hat{\boldsymbol{\varepsilon}} = \boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{Z} \hat{\boldsymbol{\beta}}$$

Definition. The Total Sum of Squares is defined as

$$oldsymbol{y}^Toldsymbol{y} = (\hat{oldsymbol{y}} + \hat{oldsymbol{arepsilon}})^T(\hat{oldsymbol{y}} + \hat{oldsymbol{arepsilon}}) = \hat{oldsymbol{y}}^T\hat{oldsymbol{y}} + \hat{oldsymbol{arepsilon}}^T\hat{oldsymbol{arepsilon}}$$

Additionally, since

$$\bar{y} = \bar{\hat{y}}$$

then

$$\mathbf{y}^T \mathbf{y} - n \bar{y}^2 = \hat{\mathbf{y}}^T \hat{\mathbf{y}} - n (\bar{\hat{y}})^2 + \hat{\boldsymbol{\varepsilon}}^T \hat{\boldsymbol{\varepsilon}}$$

which gives

$$\sum_{j=1}^{n} (y_j - \bar{y})^2 = \sum_{j=1}^{n} (\hat{y}_j - \bar{y})^2 + \sum_{j=1}^{n} \hat{\varepsilon}_j^2$$

Definition. The coefficient of determination is

$$R^{2} = 1 - \frac{\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}}$$
$$= \frac{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y}_{j})^{2}}$$

5 Principal Component Analysis

Lemma. Let B be a $p \times p$ symmetric positive definite matrix with eigenvalues

$$\lambda_1 \ge \lambda_2 \ge \cdots \le \lambda_p > 0$$

with associated eigenevectors e_1, \ldots, e_p . Then

$$\max_{x \neq 0} \frac{x^T B x}{x^T x} = \lambda_1 \text{ at } x = e_1$$

$$\min_{x \neq 0} \frac{x^T B x}{x^T x} = \lambda_p \text{ at } x = e_p$$

$$\max_{x \perp e_1, \dots, e_k} \frac{x^T B x}{x^T x} = \lambda_{k+1} \text{ at } x = e_{k+1}$$

5.1 PCA Formulation

Let random vector $X^T = \begin{bmatrix} X_1 & \cdots & X_p \end{bmatrix}$ have covariance matrix Σ with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$ and corresponding normalized eigenvectors e_1, \ldots, e_p . Consider linear combinations

$$Y_1 = a_1^T X = a_{11} X_1 + \dots + a_{1p} X_p$$

 \vdots
 $Y_p = a_p^T X = a_{p1} X_1 + \dots + a_{pp} X_p$

thus

- $\operatorname{Var}(Y_i) = a_i^T \Sigma a_i$
- $Cov(Y_i, Y_j) = a_i^T \Sigma a_j$

Definition. The principal components are those uncorrelated linear combinations $Y_1, Y_2, ...$ whose variances are as large as possible subject to $a_i^T a_i = 1$.

In other words, the *i*th component is the linear combination $a_i^T X$ that maximizes $\operatorname{Var}(a_i^T X)$ subject to $a_i^T a_i = 1$ and $\operatorname{Cov}(a_i^T X, a_j^T X) = 0$ for all j < i. From the lemma, this implies that the *i*th component is given by setting $a_i = e_i$ since $e_i^T e_i = 0$, $e_i \perp e_j$ for all j < i and $\operatorname{Cov}(a_i^T X, a_j^T X) = a_i^T \Sigma a_j$ where Σ is symmetric positive definite. Additionally, it is implied that $\operatorname{Var}(e_i^T X) = \lambda_i$.

The *i*th principal component is

$$Y_i = e_i^T X$$

5.2 Total Population Variance

Consider the principal components $Y_i = e_i^T X$. By definition

$$\operatorname{tr}(\Sigma) = \sum_{i=1}^{p} \operatorname{Var}(X_i)$$

Since the e_i are normalized, then $e_i e_i^T = I$, thus $\Sigma = \Sigma e_i e^T$. Since Σ is symmetric, then $e_i^T \Sigma e_i = \operatorname{tr} \left(e_i^T \Sigma e_i \right) = \operatorname{tr} \left(\Sigma e_i e_i^T \right)$, thus

$$\operatorname{tr}(\Sigma) = \operatorname{tr}\left(\Sigma e_i e_i^T\right) = \operatorname{tr}\left(e_i^T \Sigma e_i\right) = \sum_{i=1}^p \operatorname{Var}(Y_i) = \sum_{i=1}^p \lambda_i$$

Define the total population variance as

$$\operatorname{tr}(\Sigma) = \sum_{i=1}^{p} \sigma_{ii}$$
$$= \sum_{i=1}^{p} \lambda_{i}$$

The proportion of the total population variance due to the kth principal component is

$$\frac{\lambda_k}{\lambda_1 + \dots + \lambda_p}$$

for k = 1, ..., p. To choose how many components to retain, we consider the magnitude of an eigenvalue vs its number (i.e.: $|\lambda_i|$ vs i). This is so we can keep the predictors that have a significant explanation for population variance and can remove the ones with a weaker explanation (prevents over fitting).

5.3 Sample Variance by PC

Let the data x_1, \ldots, x_n be n independent drawings from a p-dimensional population with sample covariance matrix S with eigenvalues $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_p$ and associated normalized eigenvectors $\hat{e}_1, \ldots, \hat{e}_p$. The first PC maximizes

$$\frac{a_1^T S a_1}{a_1^T a_1}$$

which is equal to $\hat{\lambda}_i$ and attained when $a_1 = \hat{e}_1$. It follows that the *i*th PC is

$$\hat{y}_i = \hat{e}_i^T x$$

where sample covariance of (\hat{y}_i, \hat{y}_k) is 0 (i.e.: maintain uncorrelated errors).