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1 Matrix Algebra and Random Vectors

1.1 Vectors

A vector x with p elements is a p x 1 matrix

1.1.1 Vector Spaces

A vector space V over a field F is a set with 2 operators that satisfy certain axioms.
1.1.2 Inner Product Spaces
An inner product of vectors in a vector space V' is a mapping

():VxV >R

The dot product is defined as

P
(oy) =a"y =z =y'x

i=1
1.1.3 Length

The length of a vector x is L,, where

p
Lx: V.TTI': Zx% ch: ‘C|\/L>:L'
=1

where ¢ is a constant. If we choose ¢ = L', then cx is the unit vector with length 1 in

the direction of z since ¢ > 0.

1.1.4 Angle

Suppose the angle between z,y € R? is §. Then

Thus if x,y are perpendicular,

cos(0) =0 = 2Ty=0
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since L, and L, are nonzero.

1.1.5 Projections

The projection of x onto y has length

L, |cos(0)|=

(z,y) ‘
L,

This vector has direction y, so the projection of x onto vy is

1.1.6 Cauchy-Schwarz Inequality

Let z,y € RP. Then
(a7y)? < (2"2)(y"y) = L3 L;
with equality holding iff x = cy for some ¢ € R.

Proof. 1f either x,y are zero, then LHS = RHS = 0. Suppose x,y # 0 and consider
x—cy. If x —cy <0, then

0 < (z—cy)(z—cy)

=tz — 2chy + c2yTy

Since yTy > 0, then the quadratic in ¢ 272 — 2cax’y + 2y’y has no real roots, thus
4(aTy)? = A(z"z)(y"y) <0, s0

(z"y)* < (z"2)(y"y)

1.2 Matrices

Definition. The rank of a matrix A is the number of independent rows/columns of A.

o rank(A4,x,) < min(n,p)

1.2.1 Properties of Matrices
o (AB)T = BTAT
N (Afl)T — (AT)fl

.« (AB)"'= B4~
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o rank(A) = rank(AT) = rank(AAT) = rank(AT A)
o A, is invertible iff rank(A) = n

o det(AB) = det(A) det(B)

o det(A) = det(AT)

o det(A™Y) = m

o det(cApxr) = cFdet(Apxr)

o tr(A+ B) =tr(A) + tr(B)

e tr(AB) =tr(BA)

o tr(P7'AP) = tr(A) where P is invertible and of same dimension as A

1.2.2 Orthogonal Matrices

Definition. An orthogonal matrix @) € R¥** is characterized by
Q" =Q"Q =1
or equivalently, Q7 = QL.
A matrix @ is orthogonal if all its rows have length 1 and are mutually orthogonal.
Proposition. If ) is orthogonal, then det(Q) = +1.

Proof. det(Q) = det(QT) = det(Q™!) = #@) — |det(Q)|= 1. [ ]

1.2.3 Eigenvalues/Eigenvectors

An eigenvector x of a matrix A with eigenvalue A satisfies
Ax = Az

where = # 0. To solve for A, we solve det(A — AI) = 0.
Properties: For arbitrary A € RF>**,

n

Lotr(4) =)\

=1

i=1

3. P7'AP and P have the same eigenvalues
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1.2.4 Symmetric Matrices

Definition. A square matrix A is symmetric if A = AT,

Properties: For a symmetric Ay, let

(}\17 el)a (7\27 €2>7 ) (Akv ek)

be its pairs of eigenvalues and eigenvectors, which are assumed to be normalized (i.e.,
L., = 1 for all 7). Then

1. Ay éR
2. All the eigenvectors are mutually orthogonal, or equivalently, (e;,e;) =0

The spectral decomposition for symmetric matrices is the matrix

k
A= PAPT = Z)\lezef
i=1

where
P = {el ey - ek}
A=diag[A, Ay -0 Ay
e A" = PA"P where
A" =diag A} - A7)

1.2.5 Definite Matrices

Definition. A symmetric matrix Ay, is nonnegative definite if for all z € R”,
2T Az >0

If so, we say A = 0.

Definition. A symmetric matrix Ay, is positive definite if for all = # 0,

2T Ar >0

If so, we say A = 0.

Proposition. A symmetric matrix A is positive definite iff all the eigenvalues of A are

strictly positive.

« Nonnegative definite if all eigenvalues are nonnegative
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Let A be a k x k positive definite matrix, thus A = PAPT. A’s inverse is the matrix
At =PAPT

where

-1 _ 3 1 1
A —d1ag[ﬂ v

1.2.6 Square Root Matrix

Definition. The square root matrix of a positive definite matrix A is

Properties:
e A s symmetric
e A3A3 =A

e« ASA "3 — A3 A3

Il
~

1.2.7 Extended Cauchy-Schwarz Inequality

Let z,y € R? and B be a p x p positive definite matrix. Then
(¢"y)* < (" Bx)(y" B™'y)
with equality holding iff x = ¢B~ !y, c € R.
Proof. If either x or y is zero, then LHS = RHS = 0. Suppose z,y # 0. Then

ety =211y

=2'B %B’%y B is positive definite
= (B%x)TB_%y property of B2
Applying the C' — S inequality to B 2z and B’%y proves the claim. ]

1.2.8 Idempotence

Definition. A matrix A is idempotent if A? = A.

o If A isidempotent, then sois I — A
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1.2.9 Orthogonal Projection Matrices

Definition. A square matrix A is an orthogonal projection matrix if
A2 =A=AT

Note that in general, a projection matrix A is idempotent and symmetric.

Let P be an orthogonal projection matrix. Then
(z, Py) = (Pz,y) = (P, Py)
To show the first equality,
(x, Py) = 2" Py = (P'x)"y = (P2)"y = (Px,y)
To show the second, we use the first to show

(Pz, Py) = (z, P*y) = (z, Py)

1.3 Random Vectors

Definition (Random Vectors). A random vector is a vector with random variables as

elements.

1.3.1 Expected Value

The expected value of a random vector X is vector

E(Xy) h
E(X; 2
TS T e I
E(Xp) Hp

If A, B are deterministic matrices (constant matrices), then

E(AX +B)=AE(X)+B

1.3.2 Variance-Covariance Matrix

The variance-covariance matrix

011 012 °°° O1p
012 O22 -+ 02
% = Cov(X) = E[(X — pu)(X —p)7] = ’
Op O2p " Opp

Page 8



lan Zhang
STA437 Notes 1008367955

where

Oij = COV(XZ',X]')
Since covariance is symmetric, then
COV(XZ', X]) = COV(Xj, Xz)

Y} is symmetric. By definition,

Oi5 = ZZ(% - Mz‘)(%‘ - Mj)pij(xi,xj) =0y

T; Tj
1.3.3 Correlation Matrix

The correlation matrix is a matrix

L pi2 P1p
p1i2 1 P2p
p= :
Pip  P2p 1
where
Uz‘j

Pij = —— —
V0iin/Tjj
is the correlation between X; and X;. Since correlation is proportionate to covariance,

which is symmetric, then p;; = pj; for all 4, j, thus p is symmetric.

1.3.4 Standard Deviation Matrix

The standard deviation matrix is a matrix

\/O11 0

0 0 - T
It is worth noting that
S =VipVi = p=V IXV 3
In the univariate case, we have
Var(X) = B(X?) — p?
In the multivariate case,

S = B[(X = u)(X — )] = BIXXT] = "
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1.3.5 Mean/Covariance of Linear Combinations of Random Variables

Let ¢ = {cl e cp] be a vector of constants and consider the linear combination ¢ X.
Then
E(c"X)=c"E(X) Var(c' X) = c''Se

If C'is a ¢ x p deterministic matrix, then if we define the vector
Zgx1 = CgxpXpx1
as the collection of ¢ linear combinations of the X;, then
pz = Cux Yy =C0%xCT
Proof. The case of uy is trivial by definition of expectation. To show X4,

Yz = E(Z — uz)(Z — pz)"]
= E[(CX - Cux)(CX — CMX)T]
= CE[(X — px)(X — px)']C"
=CxxC"

as required. [}

1.3.6 Partitioning > and p

Partition X into 2 groups

_ X, -
1
X, X%,
X p— .. p— ..
(2
X‘I+1 X(p)—q)xl
Xp
Then _ _
M1
1
Hq /’L((]X)l
lj' = g ..
(2)
Hq+1 l’[’(p—q)xl
. up -
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and

where Y11 is ¢ X ¢, Loz is (p — q) X (p — q), T2 is ¢ X (p — ¢q) and Xy = XL,

2 Sampling Geometry and Random Sampling

2.1 Random Samples

Suppose

is a collection of n samples of size p from a joint distribution fx(z) = fx(z1,..., ).

2.2 Descriptive Statistics

Let 11, ..., 2,1 be n observations on the first variable. Then
_ 1 &
ry = - Z Ti1
iz
is the sample mean of the first variable, thus
1 n
Tp=—Y Ti
=

is the sample mean for the kth for all k € {1,...,p}.

1 _
Si = Skk — — Z(xzk - xk>2
ni4

is the sample variance, so /sgx is the sample standard deviation.

1 & _ _
sik = — (@ — Ti) (255 — Tp)
n i
is the sample covariance for i,k € {1,...,p}. Finally, the correlation coefficient is for
i,ke{l,...,p}is
Sik S @y — @) (2 — )

Tik

Ve V(g — 22 T (- T)?
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With these definitions, we can define sample mean and covariance as

T S11 - S1p
T = S, =
zp S1p Spp
If we instead use .
Sik = %k - xk)

as the sample covariance between Xj; and Xp, then we can define an unbiased estimator

of ¥ as

B(S) =% = B(5)="" Ly
Finally, define sample correlation as
1 rp T'ip
R— 12 1 Top
Tip Top o 1
2.2.1 Sample Mean as a Projection
Consider the data
T11 L1z 0 Tip
X, = x:21 17:22 x:2p I yp]
o 2 T
Define the vector
=11 1]
thus ﬁ]ln has length 1.
Claim. The projection of y; onto %]ln is the vector z;1,, = [il T - X T.

Proof.

o getn) 1 TR B PR B
i~ (i) gt e
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2.2.2 Deviation Vectors

For each y; defined above, define the deviation vector
_ T
di =y — x;l, = [171i_j:i xni_j:i}
Since z;1,, is the projection of y; onto f]ln, then d; L z;1,,. Notice how by definition,
(d;, d;) Z Tji — :E, =(n—1)sy
7j=1

foralli € {1,...,p}. This shows that the length of the deviation vectors are proportionate
to the standard deviations, so if d; is long, then the variance in that direction is large,

and if short, then the variance is small.
Ly, =+\/(n—1)sy
For i # j, we have
(d;, d;) zi: (g — &) (xp; — ;) = (n—1)s;
Since (z,y) = L, L, cos(f) where 6 is the angle between x and y, then this shows

LdiLdj COS(Qij) = (n — 1)\/8_“ Sjj COS(Qij)

By definition of sample correlation, this shows that r;; = cos(6;;), or equivalently, the
sample correlation between X; and X is the cosine of the angle between their respective
deviation vectors of their observations.

This implies that
1

n—1

S = [syliy = [ (di, d; >}

Additionally, the sum of the elements of a deviation vector must equal 0.

j

2.3 Sample Mean, Covariance, and Correlation as Matrix Op-

erations

Paired with the definitions above, the sample mean can be rewritten as

Ty Top v Tprl| |1 Ty

1 1 |T12 T22 -+ Tp2l| |1 T2
n n

Tip Top + Tppl| |1 Ty
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Define the n x p matrix of deviations

Tyl — Ty Tyg —To o Tip — Tp
1 Toy — Xy Togg —To -+ Xy — T
T P p
X-—-1,11X = ‘ _ ‘ =|d dy - d]
n : : :
xnl_jl xn2_j2 xnp_jp

Claim. [ — %]ln]lg is an orthogonal projector.
Proof. Since I and 21,17 are symmetric, then
Lo o 1 T
<<[ — ]ln]ln) a:,y> = (z,y) — <]1n]lnx,y>
n n
1
= (z,y) - <x 11n11§y>
n

- (= (1-5112)y)

which shows symmetry. To show idempotence,

1 2 2 1 2 2 1 1
(1 — nnﬂ) =I->1,17 + (mﬁ) =I-"1,17+ 1,17 =1~ ~1,17
n n n n n n

as required. [}

Using this matrix, we define the p x p sample covariance matrix using
1 o\ 1 T T 1 T
(n—1)S = (X — ]ln]lnX> (X — ]ln]lnX) =X (I — ]ln]ln) X
n n n

Define the p x p standard deviation matrix

0 0 Spp

Then the sample correlation matrix is

R=D 28D 3
where
D_%:(D%)ilzdiag[\/;j \/;TJ

2.4 Sample Values of Linear Combinations of Random Variables

Consider again
IX =X+ +cpXp
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Then

Sample mean = ¢!
Sample variance of ¢ X = ¢! Se
For a deterministic ¢ X p matrix C, the ¢ linear combinations Cjx,X, have

Sample mean vector = Cx

Sample covariance matrix = C'SCT

2.4.1 Sampling Distributions of Estimators

Let Xi,...,X, be random samples from a joint distribution with mean vector p and
covariance matrix .
« X is an unbiased estimator of y with E(X) = u
1

e The covariance matrix of X is Cov(X) = 1%

« E(S,) ="1% s0 S is an unbiased estimator of %

2.5 Generalized Variance

The sample covariance matrix is given by

S11 S12 c Sip

S12 S22 - S2p
S =

Sip S2p ttc Spp

. . . 1 . .
which contains p variances and }% covariances. To express a single value for the

variation expressed by S, use
Generalized sample variance = det(5)

The generalized sample variance is proportionate to the square of the volume generated

by the p deviation vectors dy, ..., d,.
det(S) = (n—1)"det [d; -~ d,

since S = [ﬁ(di, djﬂ _. Thus, the generalized variance is 0 iff the deviation vectors are
ij

linearly dependent.

o If n <p, then det(S) =0
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2.5.1 Other Measures of Generalized Variance
Generalized variance of standardized variables = det(R)

Since R = D~25D~2 and det(D"z) = then

P 1
=1 m’

det(R) = det(D %) det(S) det(D™2) = (511592 - - - 5,) " det(S)

P
Total sample variance = tr(S) = Y _ si
i=1

3 Multivariate Normal Distribution

3.1 Multivariate Normal Density

Definition. A p-dimensional random vector X has multivariate normal distribution if

every linear combination of its components, ¢! X has a univariate normal distribution.

If X ~ N (u,0?), the pdf is

for z € R. Rewrite the exponent as

R ) ConI (N

If X ~ N,(p, X), the exponent is generalized to

1 _
—5 @ =)'z - p)
thus the pdf is

1 < 1 S )
r)=————Fexp|—=(x—p) S (z -
f(z) 2 detyt P 5@ =) 2 (2~ p)
If det(X) = 0, we say X is degenerate.
If Zy,...,Z, are independent with Z; ~ N'(u;, 0?), the density of

Zy
Z=1:
Zp
T
is Np(p, X) with = |y --- ,up} and ¥ = diag |07 --- cr[ﬂ
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3.1.1 Bivariate Normal Distribution

If p =2, then
o= H1 _ E(Xl)
M2 E(XQ)
and
ol — 1 O22 —012
011092(1 — ,0%2) —019  O11
Thus
f(r1,22) =
1 1 _ 2 . 2
exp |— 5 <($1 (1) + (z2 — p2) — 2019(z1 — 1) (@2 — H2)>
2”\/011022(1 — p3y) 2011022(1 = pip) o1 022

3.2 Key Properties of Multivariate Normal Distribution
3.2.1 Property 1

If X ~N,(u,X), then

a’ X ~ N(a"p, a”Ya)
If we take a = [1 0 --- O}T, then a’ X = X; ~ N(uy,01). In general, the marginal
disrtibution over the X; is V(u;, 0;). Generalizing, if we consider the ¢ linear combinations
AgxpXpx1, then

AX ~ Ny (Ap, AZAT)

3.2.2 Property 2

All subsets of X are normally distributed. If we partition X, into Xélx)l and X ((z)_ QX1

then Xélx)l ~ /\/'Cl(u(l), ¥11) where 3y is ¢ X g. More precisely, if we consider

x @
X=X, --- X, 0 Xy o Xl =
X (@)

We know this gives partitions such that
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Let A = {[qxq : 0q><(pq):|' Then by property 1,
X0~ Ny(Ap, ASAT) = Ny(uV, 5)

3.2.3 Property 3

T
Let X = [X;pxl : X;j;l] . Then X® 1 X@ iff £y = 04, g,

3.2.4 Property 4

T
If X ~ Ny, %) and X = [Xl : XQ] with det(S) > 0, then the random vector

X1|Xs = x9, is Normal with mean

p1 + B1o¥oy (23 — pio)

and covariance
—1
E11 - E12222 E21

Proof. Define

Iixg 1 —Y12%5
A=
0(p—q)xq : I(F—Q)X(P—Q)
Then
Y= S1285 8y ¢ 0
0 DI
Since

X1 — 1 — B35 (Xo — po)
AX —p) =
Xo — p2
and X1 — jy — 21985 (Xo — pa) ~ Ny(0,31; — 15555 %9;), then if we condition on
Xy = a9, we have X; — g — 219505 (w2 — pg) ~ Ny(0,311 — $1935)39;) as well. By

property 1, we have
X1 Xy = a9 ~ N (Ml + 012055 (T2 — p12), X11 — 21222_21221)

as required. [}
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3.3 Constant Probability Density Contours

Let X ~ N,(u, ) so

1 1 Ty—1
f(x) = m XP<—2($—N) by (x—u)>

The constant probability density contour is the set
{z: (x-S e —p) =c}
which is the surface of an ellipsoid centered at . This means the axes of the ellipsoid
are £cv/Ae; where (A, ¢;) are eigenvalue/eigenvector pairs of ¥ for all i € {1,...,p}.
3.4 Distribution of (X — p)!S 14X — )
Let X ~ N,(u, X) with det(3) > 0. Then
(X =)' S7HX = p) ~
Thus, the probability 1 — « is assigned to
{z: (x-S z—p) <o)}

where x2(a) is the 100ath percentile of 7.

3.5 Sampling from the Multivariate Normal Distribution and
MLE

Theorem (Multivariate CLT). Let Xi,..., X, be independent samples from a popula-

tion with mean vector p and covariance . Then
V(X = ) 5 N(0,%)

3.5.1 Multivariate Normal Likelihood
Let X1,..., X, be random samples from N,(u,¥). Then their joint density function is
5 Ty—1
————exp |—=(z; —pu) X (z; — }
H L det( 2#2)|§ p (z; — ) (z; — )

0|3

= |det(217r2)\ €xp [—; i(% — )" ay — p)
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Fact: Let A € R¥* be symmetric. Then

v’ Ar = tr(2” Az) = tr(Aza”)
Claim. Z WISz — p) = tr
7=1

Proof. By the fact above,

Sy — TS (1) = Zt (575 — (a5 — )")

j=1

= tr (Z_l (Z(x] —p)(z; — M)T)) by distributivity

J=1

Furthermore,

S (a5 — )y — i) = 32 — )y — )T+ @ — ) — )T

=1 j=1

Thus, the likelihood function of (u,>) is

1 1 [ _ _ n,_ 1
L(p, %) = Wexp [—2tf (E ! (Z(% —z)(z; — $)T)) - E(x — )" E - )

7j=1
Optimizing this function tells us that the MLEs of ;1 and X respectively are

A

_ -1
p=X = _n

L3 - X)X - D) ="

Lemma. Given a p x p symmetric positive definite matrix B and a scalar b > 0, it follows
that

=P ~|BP

for all positive definite ,,, with equality when

1 e—tr(2713>/2< 1 (2b>pbefbp

1
Y =—B
2b

4 Linear Regression

4.1 Least Squares Estimation
4.1.1 Univariate

Consider the model
Y =00+5Z+¢
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By Least Squares, we want to minimize

S(bo,b1) =D (5 — bo — brz;)?
j=1
assuming data points (z1,41),. .., (2n, yn) and where the by, b; are trial values of Sy, ;.
Setting
o5, os
obg b
we have

iy — )z — 2)
Z?:l(zj —z)?

where BO, Bl are the Least Squares Estimates of [y, ;.

Bo=9— Pz B =

4.1.2 Multivariate

Counsider the model

Y =0+5Z1+ -+ B2 +¢

From n observations on Y, the model becomes

Yi =00+ fiz11+ -+ Brzir + €1

Yo =Bn+ brzn + - + Brzne + €
Make the following assumptions:
1. Elg] =0
2. Varlg;] = o?
3. Cov(e;,e;) =0ifi#j

In matrix notation,

Y =2Z23+c¢
or equivalently,
Y; 1 zin o0 21p Bo €1
= +
Yn ]- Znl *°° Rnr Bn €n

By the assumptions above,
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Let b be a trial value of 8. We want to minimize

S(b) = Z(?/j —by—bizj1 — - — erjr)Q = (y - Zb)T(y — Zb)
j=1

which will produce the LSE 3.

Definition. The deviations
& =Y — bo— brzjn — = Brzjr
are the residuals.

Note that
E=y— 2 B
Suppose Z has full rank with r +1 < n.

Claim. The LSE B is given by
B=(2"2)"'Z"y
Proof. By definition,
S(b) = (y — Zb)" (y — Zb)
= (y" —(Zb)")(y — Zb)
=y'y—y'Zb— (Zb)'y — (Zb)"(Zb)
=yly—2y"Zb—-b"Z"Zb
Then taking the partial derivatives,

gi = 2Z"y+2Z"2)b=0 = B=(2"2)"Zy

Definition. The hat matrix is the matrix
H = Z(ZTZ)_IZT

Note that H is both idempotent and symmetric, thus H is an orthogonal projector.

It follows that
y=2ZB=Hy

where g is the fitted value of y and satisfies y = ¢ + €. This implies that H projects

onto the space spanned by the columns of Z, which is the set of all linear combinations
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of the predictors. Additionally,
Z'(I-H)=0

Finally, the residuals &€ = y — ¢ satisfy Z7¢é = 0, yTé = 0.

4.1.3 Sampling Properties of the LSE
For B=(2"Z)'Z"y,

- E(B)=5

« Cov(B) =0%(27Z)!

The residuals have properties

4.2 Sum of Squares Decomposition
Definition. The Residual Sum of Squares (RSS) is as in
RSS =3 (y;— bo—Przp = = Brz) = &Te =gy —y"ZB
j=1
Definition. The Total Sum of Squares is defined as

yy=@+e)(g+e)=9"g+e&"

(L)

Additionally, since
then

which gives

Definition. The coefficient of determination is
> €5
Z?:l(yj —y)?
_ Z?:l(yj - 5)2
T (Y — Y)?

R2=1-—
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5 Principal Component Analysis
Lemma. Let B be a p X p symmetric positive definite matrix with eigenvalues

AN > <A, >0

with associated eigenevectors ey, ..., e,. Then
2T Bx

max —— =Aatx=¢
z£0 T'x

- z'Bx
min ——— = A, at x = ¢,
r#0 Tt

2" Bz

max ——— = Agy1 at & = exyq

zler,er xla

5.1 PCA Formulation

Let random vector X7 = [X 1 --- X,| have covariance matrix 3 with eigenvalues A; >
Ag > -+ > A, > 0 and corresponding normalized eigenvectors ey, ..., e,. Consider linear
combinations

Y1 = G{X = CL11X1 4+ 4+ CLlep

YVy=a, X =anXi+ -+ apX,
thus
e Var(V;) = al Za,
« Cov(Y;,Y;) = al Xa;

Definition. The principal components are those uncorrelated linear combinations Y7, Ys, . ..

whose variances are as large as possible subject to al a; = 1.

In other words, the ith component is the linear combination a! X that maximizes Var(a] X)

subject to aj a; = 1 and Cov(a] X,a; X) = 0 for all j <. From the lemma, this implies
T

that the ¢th component is given by setting a; = e; since e; ¢; = 0, e¢; L ¢; for all j < i
and Cov(af X,a] X) = a] Xa; where ¥ is symmetric positive definite. Additionally, it is
implied that Var(e] X) = A,.

The ¢th principal component is

Y;=el'X
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5.2 Total Population Variance

Consider the principal components Y; = e/ X. By definition
p
tr () =>_ Var(X;)
i=1

Since the e; are normalized, then e;el = I, thus ¥ = Yezel. Since Y is symmetric, then
efYe; = tr (eiTZei) =tr (Eeie?), thus

p p
tr (X) = tr (Eem?) = tr (eiTEel-) =) Var(V;)) => A\
i=1

i=1

Define the total population variance as

I
M-
S

-
I
A

tr (%)

I
.M“
b

s
Il
—_

The proportion of the total population variance due to the kth principal com-

ponent is
Ak

for k =1,...,p. To choose how many components to retain, we consider the magnitude
of an eigenvalue vs its number (i.e.: |A;| vs 7). This is so we can keep the predictors that
have a significant explanation for population variance and can remove the ones with a

weaker explanation (prevents over fitting).

5.3 Sample Variance by PC

Let the data zq,...,x, be n independent drawings from a p-dimensional population
with sample covariance matrix S with eigenvalues 7A\1 > 7A\2 > e > 7A\p and associated
normalized eigenvectors €y, ..., ¢é,. The first PC maximizes

al'Say

al'ay

which is equal to 7A\Z and attained when a; = é;. It follows that the ¢th PC is

where sample covariance of (;, 9x) is 0 (i.e.: maintain uncorrelated errors).
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