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1 Probability

1.1 Convergence

Definition. A sequence of random variables (Xn)n converges in probability to a random
variable Y if for all ε > 0,

lim
n→∞

P (|Xn −X|> ε) = 0

If so, then Xn
p→ X.

Theorem (Weak Law of Large Numbers). If X1, X2, . . . are independent random vari-
ables with finite mean µ, then

X̄n
p→ µ

Definition. A sequence of random variables (Xn)n converges in distribution to a random
variable X if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

If so, then Xn
d→ X.

Theorem (Central Limit Theorem). If X1, X2, . . . are independent random variables
with common cdf F , mean µ < ∞ and finite variance σ2 < ∞, then

√
n(X̄n − µ)

σ
d→ N (0, 1)

This theorem implies that the distribution of X̄n is approximately Normal with mean µ

and variance σ2

n
when n is sufficiently large.

Theorem (Slutsky’s Theorem). Suppose Xn
d→ X ∼ G and Yn

p→ θ for some constant
θ ∈ R. Then

1. Xn + Yn
d→ X + θ

2. XnYn
d→ θX

Theorem (Delta Method). Suppose an(Xn −θ) d→ Z where an ↑ ∞. If g is differentiable
at θ with derivative g′(θ), then

an(g(Xn) − g(θ)) d→ g′(θ)Z

Definition. Let X1, X2, . . . be independent with cdf F , mean µ and variance σ2 = φ(µ).
A variance stabilizing transformation is a function g such that

√
n(g(X̄n) − g(µ)) d→ N (0, 1)

• g satisfies
[g′(µ)]2φ(µ) = 1
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2 Statistical Models

2.1 Statistical Functionals

Let X1, . . . , Xn be independent with unknown cdf F .

• Often, we’re interested in estimating characteristics θ(F ) of F

◦ A statistical functional is a function θ(·) : F → R where F is a family of
distributions with F ∈ F

2.1.1 Substitution Principle

Given X1, . . . , Xn
iid∼ F , we estimate θ(F ) by first estimating F → F̂ and substituting F̂

for F into θ(F ):
θ̂(F ) = θ(F̂ )

If θ(·) is continuous and F̂ ≈ F , then θ(F̂ ) ≈ θ(F ).

Definition. A simple estimator of F is the Empirical Distribution Function (edf) defined
by

F̂ (x) = 1
n

n∑
i=1

I(Xi ≤ x)

Properties of the edf:

• E[F̂ (x)] = F (x)

• Var[F̂ (x)] = F (x)(1−F (x))
n

• Since the edf is effectively a sample mean of independent Bernoulli trials, the CLT
and WLLN both hold

– F̂ (x) = F̂n(x) p→ F (x) for each x

–
√
n(F̂n(x) − F (x)) d→ N (0, F (x)(1 − F (x)))

2.2 Order Statistics

Let X1, . . . , Xn be independent with continuous cdf F and pdf f .

Definition. The order statistics of X1, . . . , Xn are the ordered values of the Xi:

X(1) ≤ X(2) ≤ · · · ≤ X(n)

• If k ≈ τn for some τ ∈ (0, 1), then X(k) should tend to F−1(τ) as n increases →
X(k) ≈ F−1(τ) for large n
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2.2.1 Distribution of X(k)

The cdf of X(k) is

P (X(k) ≤ x) =
n∑

i=k

(
n

i

)
F (x)i[1 − F (x)]n−i

2.2.2 Central Order Statistics

Definition. Suppose k = kn ≈ τn for some τ ∈ (0, 1) but not too close to 0 nor 1. We
say X(k) is a central order statistic.

• X(k) is an estimator of the τ -quantile F−1(τ) so expect X(k) → F−1(τ) as n → ∞
if k

n
→ τ

Theorem (Convergence in Distribution of Central Order Statistics). If (kn)n is a se-
quence of integers with

√
n
(

kn

n
− τ

)
→ 0 for some τ ∈ (0, 1) and f(F−1(τ)) > 0, then

√
n(X(kn) − F−1(τ)) d→ N

(
0, τ(1 − τ)
f 2(F−1(τ))

)

2.3 Spacings Density Estimation

Given order statistics X(1) ≤ · · · ≤ X(n), define n− 1 spacings as

Dk = X(k+1) −X(k)

for k ∈ {1, . . . , n− 1}.
If τ ≈ k+1

n
≈ k

n
, then X(k+1) ≈ X(k) ≈ F−1(τ). Since the number of observations around

F−1(τ) should increase as f(F−1(τ)) increases, Dk should be smaller if f(F−1(τ)) is large
and conversely larger if f(F−1(τ)) is small.

2.3.1 Spacings From a Continuous F

Suppose F is continuous. Then if kn

n
→ τ for some τ ∈ (0, 1) and f(F−1(τ)) > 0, then

nDkn

d→ Exponential with mean 1
f(F−1(τ))

2.3.2 Hazard Functions

Definition. If X is a positive continuous random variable with cdf F and pdf f , its
hazard function is

h(x) = f(x)
1 − F (x)

• F (x) = 1 − exp
(

−
∫ x

0
h(t) dt

)
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• f(x) = h(x) exp
(

−
∫ x

0
h(t) dt

)
Suppose X1, . . . , Xn are independent positive continuous random variables with hazard
function h. Define normalized spacings nX(1), (n − 1)D1, . . . Dn−1. If k

n
→ τ for some

τ(0, 1), then
(n− k)Dk

d→ Exponential(h(F−1(τ)))

Proof. Note that
1

h(F−1(τ)) = 1 − F (F−1(τ))
f(F−1(τ)) = 1 − τ

f(F−1(τ))

and since Dk
d→ Exponential(f(F−1(τ)))

(n− k)Dk =
(

1 − k

n

)
nDk

≈ (1 − τ)nDk

d→ Exponential
(

1 − τ

f(F−1(τ))

)

by linearity of expectation.

2.4 Kernel Density Estimation

Let w(x) be a density called a kernel. Given a kernel w, a bandwidth parameter h, define
the kernel density estimator to be

f̂h(x) = 1
nh

n∑
i=1

w
(
x−Xi

h

)

3 Point and Interval Estimation

3.1 Point Estimation

Let θ̂ = θ̂(X1, . . . , Xn) be an estimator of θ.

Definition. The sampling distribution of θ̂ is its probability distribution

• This will depend on θ

Definition. The Mean Squared Error (MSE) of θ̂ is

MSEθ(θ̂) = Eθ[(θ̂ − θ)2] = Varθ(θ) + [Biasθ(θ̂)]2

• If θ̂ is an unbiased estimator of θ, then

MSE(θ̂) = Varθ(θ̂)
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3.1.1 Consistency

Definition. The sequence of estimators (θ̂n)n is consistent for θ if for all ε > 0 and θ ∈ Θ,

lim
n→∞

P (|θ̂n − θ|> ε) = 0

• (θ̂n)n is consistent for θ if θ̂n
p→ θ

3.2 Standard Error

Assume θ̂ is an estimator of θ.

Definition. The standard error of θ̂ is the standard deviation of the sampling distribution
of θ̂ and is denoted se(θ̂).

Often, se(θ̂) includes unknown parameters (since the sampling distribution is dependent
on θ), so we have to resort to estimating the standard error. There are 2 methods for
estimating: the Delta Method and Jackknife.

3.2.1 Delta Method Standard Error Estimator

Let X1, . . . , Xn be independent with some unknown cdf F . Suppose θ̂ = g(X̄). If g is
differentiable, by the Delta Method

θ̂ = g(X̄) ∼̇N
(

0, [g′(µ)]2σ
2

n

)

where σ2 = Var(Xi). Then since we can estimate σ2 with S2, by the substitution principle,
we can estimate standard error with

ŝe(θ̂) = |g′(X̄)|S√
n

where S :=
√
S2.

• Idea is to use the Delta Method to obtain a sampling distribution of θ̂, and then
estimate the standard error using the substitution principle

3.2.2 Jackknife Standard Error Estimator

Suppose θ̂ = θ̂(X1, . . . , Xn) is an estimator of θ. Define the leave-one-out estimator θ̂−i

as
θ̂−i = θ̂(X1, . . . , Xi−1, Xi+1, . . . , Xn)

Suppose we can approximate θ̂ as a sample mean

θ̂ ≈ 1
n

n∑
i=1

φ(Xi)
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where φ is unknown. Then the leave-one-out estimators satisfy

θ̂−i ≈ 1
n− 1

∑
j ̸=j

φ(Xi)

Since φ is unknown, define pseudo-values

ϕi = nθ̂ − (n− 1)θ̂−i ≈ φ(Xi)

which are used to recover φ(Xi).
Given pseudo-values ϕ1, . . . ,ϕn, the Jackknife Standard Error estimator is defined as

ŝe(θ̂) =
(

1
n(n− 1)

n∑
i=1

(ϕi − ϕ̄)2
) 1

2

=
(
n− 1
n

n∑
i=1

(θ̂−i − θ̂•)2
) 1

2

where
θ̂• := 1

n

n∑
i=1

θ̂−i

3.3 Method of Moments Estimation

Consider X1, . . . , Xn with joint pdf/pmf

f(x1, . . . , xn; θ1, . . . , θk)

for an unknown finite number unknowns θ1, . . . , θk.

3.3.1 One Unknown

Find a statistic T (X1, . . . , Xn) such that

Eθ(T (X1, . . . , Xn)) = h(θ)

where h has a well-defined inverse. Then propose an estimator

θ̂ = h−1(T )

3.3.2 k unkwnowns

If we have k unknown parameters, then we need k moment conditions

• Ensure that there is an injective mapping between the θi and the moments

We can also use quantiles as moment conditions: If X1, . . . , Xn are independent with cdf
Fθ and F−1

θ (τ) = h(θ), then we can define θ̂ = h−1(X(k)) where k ≈ nτ .
Example:
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Suppose X1, . . . , Xn are independent with pdf

f(x;α, λ) = λαxα−1 exp(λx)
Γ(α) for x ≥ 0

where λ, α > 0 are unknown. Note that

E(Xi) = α

λ
Var(Xi) = α

λ2

Set
X̄ = α̂

λ̂
S2 = α̂

λ̂2

Then
α̂ = X̄2

S2 λ̂ = X̄

S2

3.4 Interval Estimation

Let (X1, . . . , Xn) have a distribution with unknown parameter θ. Interval estimation is
when we define an interval

I = [l(X1, . . . , Xn), u(X1, . . . , Xn)]

that we believe will contain θ with probability 1.

3.4.1 Confidence Intervals

Definition. An interval I = [l(X1, . . . , Xn), u(X1, . . . , Xn)] is a confidence interval with
coverage 100p% if

Pθ(θ ∈ I) = p ∀θ ∈ Θ

3.4.2 Pivotal Method

Let X1, . . . , Xn be independent with unknown cdf F . Estimate θ = θ(F ) by θ̂ with

θ̂ ∼̇ N (θ, [se(θ̂)]2)

If ŝe(θ̂) is a good estimator of se(θ̂), then

θ̂ − θ

ŝe(θ̂)
∼̇ N (0, 1)

The idea of the pivotal method is to find a random variable g(X1, . . . , Xn, θ) with a
distribution independent of θ and any other unknowns

• g(X1, . . . , Xn, θ) is called a pivot
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Given a pivot, choose a, b such that

p = Pθ(a ≤ g(X1, . . . , Xn, θ) ≤ b) = G(b) −G(−a)

where G is the cdf of g(X1, . . . , Xn, θ) and is completely known. From this, we can
manipulate to

p = Pθ(l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn))

Choosing g(X1, . . . , Xn, θ): If we have a point estimator θ̂, select g(θ̂, θ) such that its
distribution is independent of θ.
Choosing a, b: If G is cdf of the pivot, default is defining a, b such that

G(a) = 1 − p

2 G(b) = 1 + p

2

We want the CI to be as short as possible, so we have to minimize the distance b− a.

3.5 Maximum Likelihood Estimation

Model: Let (X1, . . . , Xn) be random variables with joint pdf/pmf

f(x1, . . . , xn; θ1, . . . , θk)

where θ1, . . . , θk are unknown parameters.
Define the likelihood function for fixed data x1, . . . , xn as

L(θ1, . . . , θk) = f(x1, . . . , xn; θ1, . . . , θk)

Definition. Suppose for each x = (x1, . . . , xn), (T1(x), . . . , Tk(x)) maximizes L(θ1, . . . , θk).
The MLEs of θ1, . . . , θk are

θ̂j = Tj(x)

for all j ∈ {1, . . . , k}.

• The MLE need not be unique nor exist

3.5.1 Sufficiency

Definition. A statistic T = (T1(X), . . . , Tm(X)) is a sufficient statistic for θ if the con-
ditional distribution of X given T = t depends solely on t and not θ.

Theorem (Neyman-Factorization Theorem). Suppose the joint pdf/pmf ofX = (X1, . . . , Xm)
is f(x; θ). The statistic T = (T1(X), . . . , Tm(X)) is a sufficient statistic of θ iff

f(x; θ) = g(T (X); θ)h(x)

where h doesn’t depend on θ.
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3.5.2 Computing MLE

There are 2 scenarios depending on the parameter set Θ.

1. L(θ) is differentiable and Θ is open. Then θ̂ is the MLE if it satisfies the likelihood
equation

d

dθ
ln(L(θ)) = 0

2. θ̂ occurs on a boundary:

• θ̂ ∈ ∂Θ

• θ̂ is an extreme of the data (ie: θ̂ = X(n))

3.5.3 One parameter models

Let X1, . . . , Xn be random variables with joint pdf/pmf f(x1, . . . , xn; θ) where θ ∈ Θ is
unknown. Consider the likelihood function

L(θ) = f(x1, . . . , xn; θ)

which is maximized over Θ by the MLE. If Θ is open and L differentiable, then we can
determine θ̂ by the likelihood equation

d

dθ
ln(L(θ)) = 0

Given the MLE θ̂, defined the observed Fisher information as

− d2

dθ2 ln(L(θ̂))

The Fisher information is used to estimate standard error of the MLE:

ŝe(θ̂) =
(

− d2

dθ2 ln(L(θ̂))
)− 1

2

The Fisher information tells us about the absolute curvature of the log-likelihood function
at its maximum; the greater the curve, the more well-defined the MLE is, thus as Fisher
information increases, uncertainty in the estimate decreases.

3.5.4 Theoretical justification of MLE

The MLE θ̂ = θ̂n maximizes

ln(L(θ)) =
n∑

i=1
ln(f(xi; θ))
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over Θ. It also maximizes

1
n

(ln(L(θ)) − ln(L(θ0))) = 1
n

n∑
i=1

ln
(
f(Xi; θ)
f(Xi; θ0)

)
=: φn(θ)

By the WLLN, for each θ ∈ Θ,

1
n

n∑
i=1

ln
(
f(Xi; θ)
f(Xi; θ0)

)
p→ Eθ0

[
ln
(
f(Xi; θ)
f(Xi; θ0)

)]
=: φ(θ)

Proposition (Jensen’s Inequality). If g is strictly concave (ie: g′′ < 0), then

E[g(Y )] ≤ g[E(Y )]

with equality iff Y is constant.

Claim. 0 = φ(θ0) > φ(θ) for all θ ̸= θ0.

Proof. Suppose f is a pdf without loss of generality. By Jensen’s Inequality, since ln(x)
is strictly concave, for θ ̸= θ0,

φ(θ) = Eθ0

[
ln
(
f(Xi; θ)
f(Xi; θ0)

)]

< ln
(
Eθ0

(
f(Xi; θ)
f(Xi; θ0)

))

= ln
(∫

R

f(x; θ)
f(x; θ0)

f(x; θ0) dx
)

= ln
(∫

R
f(x; θ) dx

)
= 0

as required.

Since, θ̂n maximizes φn(θ), which converges in P for each θ to φ(θ), which is maximized
at θ = θ0, this justifies θ̂ as an estimator of θ0.

3.5.5 Consistency of MLE

If the MLE is a function of a sample mean, then θ̂n = g(X̂n) p→ g(µ0) = θ0 if g is
continuous.

• Since conditions on f(x; θ) and Θ facilitate consistency, assume consistency of (θ̂n)n.

3.6 Asymptotic Normality of MLEs

Let X1, . . . , Xn be independent with pdf/pmf f(x; θ) for some θ ∈ Θ. Assume
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• Θ is open

• A = {x : f(x; θ) > 0} is independent of θ

• l(x; θ) = ln(f(x; θ)) is 3 times differentiable WRT θ for all x ∈ A with derivatives
l′(x; θ), l′′(x; θ), l′′′(x; θ).

If θ0 is the true parameter, then

√
n(θ̂ − θ0) d→ N

(
0, 1
I(θ0)

)

where I(θ0) = Var[l′(x; θ)] = −E[l′′(x; θ)] Notice that this implies

ŝe(θ̂n) =
(

−
n∑

i=1
l′′(xi; θ̂n)

)− 1
2

=
(

− d2

dθ2 ln(L(θ̂n))
)− 1

2

by log identities. Since the MLE is approximately Normally distributed, the CIs are
based on the pivot

θ̂ − θ

ŝe(θ̂)
∼̇ N (0, 1)

We can also use the approximate pivot

2[ln(L(θ̂)) − ln(L(θ)] ≈ nI(θ)(θ̂ − θ)2 ∼̇χ2
1

thus the approximate 100p% CI is

{θ : 2[ln(L(θ̂)) − ln(L(θ))] ≤ qp}

where qp is the pth quantile of the χ2
1 distribution.

3.6.1 Bartlett Identities

Suppose f(x; θ) is a pdf and let A = {x : f(x; θ) > 0} be independent of θ, thus for all
θ ∈ Θ, ∫

A
f(x; θ) dx = 1

thus taking any kth order derivative of
∫

A
f(x; θ) dx would equal 0. If we suppose we can

differentiate under the
∫

sign, the Bartlett identities hold:

dk

dθk

∫
A
f(x; θ) dx =

∫
A

∂k

∂θk
f(x; θ) dx = 0

The k = 1 and k = 2 identities imply that Var[l′(xi; θ)] = −E[l′′(xi; θ)], which is what
we would expect.
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3.6.2 Invariance of the Likelihood to injective transformations

We know that if X1, . . . , Xn are independent, then the MLE θ̂, under regularity conditions
on f(x; θ), is asymptotically Normally distributed with

θ̂ ∼̇ N
(
θ0,

1
nI(θ0)

)

where I(θ) = Var[l′(Xi; θ)] = −E[l′′(Xi; θ).
What if X1, . . . , Xn aren’t independent?
Suppose that theX1, . . . , Xn have joint pdf/pmf f(x1, . . . , xn; θ). Define Y = (Y1, . . . , Yn) =
g(X1, . . . , Xn) where

g(x) =


g1(x)

...
gn(x)


is an injective function.

Claim. The likelihoods for θ based on x and y = g(x) are the same up to a multiplicative
constant:

L(θ|x) = L(θ|y)K(y)

where K is independent of θ.

• In the discrete case, take K(y) = 1

• In the continuous case, take K(y) =Jacobian of g−1(y)

• The MLE based on x1, . . . , xn is the same as the MLE based on y1, . . . , yn

If the X1, . . . , Xn are dependent but the Y1, . . . , Yn are independent, then we can still
apply iid theory to the MLE, such as using Fisher information to estimate standard
errors.

3.6.3 More general MLE

Suppose (X1, . . . , Xn) have joint pdf/pmf f(x1, . . . , xn; θ). We can rewrite f(x1, . . . , xn; θ)
as a product of conditional pdfs/pmfs.:

f(x1, . . . , xn; θ) = f(x1; θ)
n∏

i=2
f(xi|x1, . . . , xi−1; θ)

Thus, the log-likelihood function is

ln(L(θ)) = l(x1; θ) +
n∑

i=2
l(xi|x1, . . . , xi−1; θ)
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If θ0 is the true parameter value, then l′(X1; θ0) and l′′(Xi|X1, . . . , Xi−1; θ) for i ≥ 2 each
have mean 0 and are uncorrelated. Additionally,

θ̂ − θ0 ≈ −

n∑
i=1

l′(Xi|X1, . . . , Xi−1; θ0)
n∑

i=1
l′′(Xi|X1, . . . , Xi−1; θ)

• The numerator is the sum of uncorrelated random variables with expected value 0,
so should be approximately Normally distributed

• The variance of the numerator is equal to the negative expected value of the de-
nominator

Thus
Var(θ̂) ≈

(
−

n∑
i=1

l′′(Xi|X1, . . . , Xi−1; θ0)
)−1

which implies

ŝe(θ̂) =
(

−
n∑

i=1
l′′(Xi|X1, . . . , Xi−1; θ̂

)− 1
2

=
(

− d2

dθ2 ln(L(θ))
)− 1

2

3.7 Misspecified Models

Suppose X1, . . . , Xn are independent with pdf/pmf f(x; θ) for some θ ∈ Θ. Suppose the
true pdf/pmf is some g(x) ̸= f(x; θ) for all θ ∈ Θ.

• This model is a misspecified model

• Ideally, we want g(x) ≈ f(x; θ0)

Define θ̂ as the solution to
d

dθ
ln(L(θ)) = 0

Since θ̂ is the MLE, then θ̂ = θ̂n also maximizes

φn(θ) = 1
n

n∑
i=1

ln
(
f(Xi; θ)
g(Xi)

)

By the WLLN, for all θ ∈ Θ,

φn(θ) p→ φ(θ) = Eg

[
ln
(
f(Xi; θ)
g(Xi)

)]

Define θ0 to be the value of θ maximizing φ over Θ.

• This is consistent with the theoretical justification of the MLE

This implies
Eg(l′(Xi; θ0)) = 0
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3.7.1 Asymptotic Normality of the MLE in a misspecified model

For a misspecified model, the asymptotic normality of the MLE is a bit different. Suppose
the regularity conditions of asymptotic normality of θ̂ for a specified model hold. Then

√
n(θ̂ − θ0) ∼̇ N

(
0, Jg(θ0)
I2

g (θ0)

)

where
Ig(θ0) = −Eg[l′′(Xi; θ0)] Jg(θ0) = Var[l′(Xi; θ0)]

so
θ̂ ∼̇ N

(
θ0,

Jg(θ0)
nI2

g (θ)

)
We can estimate Jg and Ig using

Ĵg = 1
n− 1

n∑
i=1

(l′(Xi; θ̂))2

• Since θ̂ p→ θ0 and Eg[l′(Xi; θ0)] = 0

and
Îg = − 1

n

n∑
i=1

l′′(Xi; θ̂)

So, we estimate standard error using

ŝe(θ̂) =
 Ĵg

nÎ2
g

 1
2

3.8 MoM vs MLE

Suppose the regularity conditions for asymptotic normality of MLEs holds and that
Eθ[g(Xi)] = ψ(θ) where ψ is injective.
MoM:

1
n

n∑
i=1

g(Xi) = ψ(θ̃n)

θ̃n = ψ−1
(

1
n

n∑
i=1

g(Xi)
)

From the CLT, we know that

√
n

(
1
n

n∑
i=1

g(Xi) − ψ(θ)
)

d→ N (0,Varθ(g(Xi)))
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From the Delta Method,

√
n(θ̃n − θ) d→ N

(
0, σ2(θ) := Varθ(g(Xi))

[ψ′(θ)]2

)

This implies that
√
n(θ̃ − θ) ≈

√
n

ψ′(θ)

[
1
n

n∑
i=1

g(Xi) − ψ(θ)
]

For the MLE, since
√
n(θ̂n − θ) d→ N

(
0, 1
I(θ)

)
we have

√
n

θ̂n − θ

θ̃n − θ

 d→ N2(0, C(θ))

where N2 denotes the bivariate normal distribution and C(θ) is a 2×2 covariance matrix
defined as

C(θ) :=
 1

I(θ) η(θ)
η(θ) σ2(θ)


where η(θ) is further defined

η(θ) = 1
I(θ)ψ′(θ)Covθ[g(Xi), l′(Xi; θ)]

By the Cauchy-Schwarz,

(Covθ[g(Xi), l′(Xi; θ)])2 ≤ Var[g(Xi)]Var[l′(Xi; θ)] = σ2(θ)[ψ′(θ)]2I(θ)

so
η2(θ) ≤ σ2(θ)

I(θ)
Furthermore

ψ′(θ) = d

dθ

∫
A
g(x)f(x; θ) dx

=
∫

A
g(x) ∂

∂θ
f(x; θ) dx

=
∫

A
g(x)l′(x; θ)f(x; θ) dx

= Eθ[g(Xi)l′(Xi; θ)]
= Cov[g(Xi), l′(Xi; θ)] since E[l′(Xi; θ)] = 0

Thus,
η(θ) = 1

I(θ)ψ′(θ)Cov[g(Xi), l′(Xi; θ)] = 1
I(θ)
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But since we also showed that
η2(θ) ≤ σ2(θ)

I(θ)
this implies that

1
I2(θ) ≤ σ2(θ)

I(θ) =⇒ Varθ(θ̂) = 1
nI(θ) ≤ σ2(θ)

n
= Varθ(θ̃)

which shows the MLE has a lower standard error than MoM

• This means the MLE is a better estimator of than the MoM

Definition. Estimators (θ̂n)n are efficient estimators if

√
n(θ̂n − θ) d→ N

(
0, 1
I(θ)

)

3.9 Bayesian Inference

Bayesian approach: Quantify a priori information about θ via probability distributions

• Think of f(x1, . . . , xn; θ) as representing conditional pmf/pdf of (X1, . . . , Xn) given
a value of θ where θ has some probability distribution on Θ

f(x1, . . . , xn; θ) = f(x1, . . . , xn | θ)

The information about θ is given through a priority density function π(θ).

Theorem (Bayes’). Suppose θ is discrete-valued with prior pmf π(θ) on Θ = {θ1, . . . , }.
Then the posterior density function is

π(θj | x1, . . . , xn) = π(θj)f(x1, . . . , xn; θj)∑
k π(θk)f(x1, . . . , xn; θk)

= c(x1, . . . , xn)π(θj)L(θj)
∝ π(θj)L(θj)

where
c(x1, . . . , xn) =

[∑
k

π(θk)f(x1, . . . xn; θk)
]−1

For a continuous parameter space, define the posterior density by

π(θ | x1, . . . , xn) = π(θ)f(x1, . . . , xn; θ)∫
Θ π(s)f(x1, . . . , xn; s) ds

= c(x1, . . . , xn)π(θ)L(θ)
∝ π(θ)L(θ)
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where
c(x1, . . . , xn) =

[∫
Θ
π(s)f(x1, . . . , xn; s) ds

]−1

The reason we have a function c(x) is to normalize π(θ)L(θ) such that π(θ | x) is a
pdf/pmf.
The general framework of Bayesian inference is to use the prior information on the pa-
rameter θ in the form of the prior distribution and then observing the information on θ

after collecting data (through the posterior distribution).
If we have multiple parameters (θ1, . . . , θk), the general framework is the same.

π(θ1, . . . , θk | x1, . . . , xn) = c(x1, . . . , xn)π(θ1, . . . , θk)L(θ1, . . . , θk)

3.9.1 Choice of prior

• If Θ is bounded, we can set π(θ) = d for some constant d for θ ∈ Θ

Conjugate priors
Given a model, choose a prior density such that the posterior density has the same form
as the prior

πα(θ) data−−→ πα′(θ | x1, . . . , xn)

where α′ is dependent on (x1, . . . , xk).

3.9.2 Bayesian Interval Estimation

Definition. Given a posterior density π(θ | x1, . . . , xn), an interval I = I(x) is a 100p%
credible interval for θ if ∫

I(X)
π(θ | x1, . . . , xn) dθ = p

Definition. A 100p% credible interval I is a 100% highest posterior density for θ if for
all θ ∈ I and θ′ /∈ I,

π(θ | x1, . . . , xn) > π(θ′ | x1, . . . , xn)

Note that the coverage of a confidence interval is defined in terms of the distribution of
X while the coverage of a credible interval is defined in terms of the posterior density.

3.10 Bias and Variance Tradeoffs

Recall that the mean squared error is defined as

MSEθ(θ̂) = Eθ[(θ̂ − θ)2]

which can be rewritten as
Varθ(θ̂) + Biasθ(θ̂)2
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In a parametric model, the variance component of the MSE is typically much larger than
the bias squared component. However, if the model is a poor approximation or contains
outliers, then the bias may pose an issue. A bias-variance tradeoff usually occurs in a
non-parametric estimation where tuning parameters are being used. To combat this , we
can use a “divide and conquer” method: Divide the data into k subsets of size m and
define

θ̄ = 1
k

k∑
i=1

θ̂i

where θ̂i is based on the ith subset.

3.11 Non-parametric Regression

Model: Yi = g(Xi) + εi for i = 1, . . . , n where g is unknown but smooth, the εi are
independent with mean 0 and variance σ2. We estimate g(x) by

ĝ(x) =
n∑

i=1
wi(x)Yi

where ∑n
i=1 wi(x) = 1. This implies

E[ĝ(x)] =
n∑

i=1
wi(x)E(Yi) =

n∑
i=1

wi(x)g(xi)

Var[ĝ(x)] =
n∑

i=1
w2

i (x)Var(Yi) = σ2
n∑

i=1
w2

i (x)

Thus,
Bias[ĝ(x)] =

n∑
i=1

wi(x)[g(xi) − g(x)]

To make bias small, we set wi(x) close to 0 when |g(xi) − g(x)| is large and wi(x) larger
when the distance is small. Since we assume g is smooth, the size of |g(xi)−g(x)| directly
relates to |xi − x|, which minimizes error in our regression.

3.11.1 Smoothing Matrices

In matrix form,

ĝ =


ĝ(x1)

...
ĝ(xn)

 =


w1(x1) · · · wn(x1)

... . . . ...
w1(xn) · · · wn(xn)



Y1
...
Yn

 = SY

where S is the smoothing matrix. Then

ĝ − g = S(g + ε) − g = (S − I)g + Sε
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which represents the bias-variance trade-off (the (S − I)g term represents bias, the Sε

represents variance).

4 Hypothesis Testing

A hypothesis test involves comparing a simple model to a more complicated one

• Comparing the null hypothesis, H0, to the alternate hypothesis, H1

There are 2 types of error:

Type I Rejecting H0 in favour of H1 when H0 is true

Type II Accepting H0 when H1 is true

The goal of a classical hypothesis test is the minimize the probability of Type II error
subject to a bound on the probability of a Type I error.

4.1 Power of a Test

Definition. The power of a test is the probability of rejecting H0.

If H0 is true, then
power = P (Type I error)

If P (type I error) ≤ α, then α is the level/size of the test.

• If H1 is true, then power = 1 − P (Type II error)

4.1.1 Formal Setup of a Hypothesis Test

Let X = (X1, . . . , Xn) have a joint pdf/pmf f(x; θ) for some θ ∈ Θ. Split Θ = Θ0 ∪ Θ1

where Θ0 and Θ1 are disjoint. We want to test

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1

at level α.
Define the power function power(θ) ≤ Pθ[reject H0].

• If θ ∈ Θ0, then power(θ) ≤ α

• If θ ∈ Θ1, then power(θ) = 1 − Pθ[type II error]

Define φ(X) to take values 0 and 1 such that

φ(X) = 0 =⇒ accept H0
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φ(X) = 1 =⇒ reject H0

thus the power(θ) = Eθ[φ(X)] = Pθ(φ(X) = 1). So, we want φ such that Pθ(φ(X) =
1) ≤ α for all θ ∈ Θ0.
The goal is the maximize power Eθ[φ(X)] for θ ∈ Θ1 over all α-level test functions.
Example:
Consider the following simple model: Suppose Θ takes only 2 possible values {θ, θ1}.
Define f0(x) = f(x; θ0) and f1(x) = f(x; θ1) and consider the test

H0 : X ∼ f0(x) H1 : X ∼ f1(x)

If φ(X) is an α-level test function, then φ satisfies

E0[φ(X)] =
∫
φ(x)f0(x) dx ≤ α

Thus, we want to find φ that maximizes

E1[φ(X)] =
∫
φ(x)f1(x) dx

subject to the above constraint.

4.2 Neyman-Pearson Lemma

Suppose Θ takes only 2 possible values {θ, θ1}. Define f0(x) = f(x; θ0) and f1(x) =
f(x; θ1) and consider the test

H0 : X ∼ f0(x) H1 : X ∼ f1(x)

For some finite k > 0, define the test function

φ∗(x) =

1 if f1(x)
f0(x) ≥ k

0 if f1(x)
f0(x) < k

and set α = E0[φ∗(X)]. φ∗ maximizes E1[φ(X)] over all test functions φ with E0[φ(X)] ≤
α.

• In other words, φ∗ is the most powerful (MP) α-level test of H0 vs. H1

• The test statistic is
T = f1(x)

f0(x) = L(θ1)
L(θ0)

In practice, we want k such that α = P
(

L(θ1)
L(θ0) ≥ k

)
to define the MP α-level test
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Consider the following one-sided testing problem: Let X1, . . . , Xn be independent Expo-
nential random variables with parameter λ. We want to test

H0 : λ ≤ λ0 H1 : λ > λ0

First, we look at
H ′

0 : λ ≤ λ0 H ′
1 : λ = λ1 > λ0

The N-P lemma gives us the MP α-level test of H ′
0 vs H ′

1. For this test, the test statistic
is

T (X) =
(
λ1

λ0

)n

exp
[
(λ0 − λ1)

n∑
i=1

Xi

]

Note that T (X) is a decreasing function of ∑n
i=1 since λ0 < λ1, thus the MP test of H ′

0

vs H ′
1 rejects H ′

0 at level α if
n∑

i=1
Xi ≤ k where Pλ0

[
n∑

i=1
Xi ≤ k

]
= α

Since

1. The MP α-level test of H ′
0 vs H ′

1 is the same for all λ1 > λ0

2. For λ ≤ λ0,

Pλ

[
n∑

i=1
Xi ≤ k

]
≤ α

the MP α-level test of H ′
0 vs H ′

1 is (from 2. above) an α-level test of H0 vs. H1, and
furthermore a uniformly most powerful (UMP) α-level test of H0 vs H1.
Now suppose the scenario is a two-sided test:

H0 : λ = λ0 H1 : λ ̸= λ0

In this case, the MP α-level test of

H ′
0 : λ = λ0 H ′

1 : λ = λ1

depends on if λ1 > λ0 or λ1 < λ0.

• If λ0 < λ1, we reject if ∑n
i=1 Xi ≤ k1

• If λ0 > λ1, we reject if ∑n
i=1 Xi ≥ k2

This shows there is no UMP test of H0 vs. H1.
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4.2.1 Likelihood Ratio Test

Let X = (X1, . . . , Xn) have pdf/pmf f(x; θ) where θ = (θ1, . . . , θn) ∈ Θ. Suppose Θ0 is a
lower-dimensional subset of Θ. Define the Likelihood Ratio Statistic

Λ = supθ∈Θ f(x; θ)
supθ∈Θ0 f(x; θ) = f(x; θ̂)

f(x; θ̂0)

where θ̂ is the MLE of θ and θ̂0 is the MLE under H0.
Reject H0 at level α for Λ ≥ kα where

sup
θ∈Θ0

Pθ(Λ ≥ kα) ≤ α

• 2 ln(Λ) ∼̇χ2
p−r where p = dim(Θ) and r = dim(Θ0)

Example:
Suppose that X1, . . . , Xn

iid∼ N (µ, σ2) and we want to test

H0 : µ = 0 H1 : µ ̸= 0

at level α. The likelihood function is given by

L(µ, σ2) = 1
σn(2π) 2

n

exp
[
− 1

2σ2

n∑
i=1

(xi − µ)2
]

The unrestricted MLEs are

µ̂ = X̄ σ̂2 = 1
n

n∑
i=1

(Xi − X̄)2

while under H0, the MLEs are

µ̂0 = 0 σ̂2
0 = 1

n

n∑
i=1

X2
i

thus the likelihood ratio test statistic is

Λ =
(
σ̂2

0
σ̂2

)n
2

= 1 + nX̄2∑n
i=1(Xi − X̄)2

= 1 + 1
n− 1

(
X̄

S/
√
n

)2

which is an increasing function. Note that the quantity

T = X̄

S/
√
n

has Student’s tn−1 distribution, thus T 2 has Snedcor’s F1,n−1 distribution. By the LRT,
we reject H0 for large values of H0, thus we observe the quantiles of F1,n−1 distribution.
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4.3 p values

Define tests for all α ∈ (0, 1).

Definition. The p value is the smallest α for which we reject H0 (any α-level test for α
less than the p value will always accept H0)

For given data x,

p value = PH0(X is more extreme than x) = PH0(T (X) ≥ T (x))

where T = T (X) is a test statistic.
Suppose we test H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1. For each α ∈ (0, 1), define test functions

φα(X) =

1 if X ∈ Rα

0 if X /∈ Rα

where Eθ[φα(X)] = Pθ(X ∈ Rα) ≤ α.

• Rα is the rejection region of the α-level test

The rejection regions {Rα : α ∈ (0, 1)} are nested such that Rα1 ⊆ Rα2 if α1 < α2.
Define the p value as

L(x) = inf{α : x ∈ Rα} = inf{α : Rα is nonempty}

• We often use the p value in favour of H1 over H0

sec

4.3.1 Stochastic Ordering

Definition. Suppose F and G are cdfs. F is stochastically greater than G, denoted
F ⪰s G if F (x) ≤ G(x) for all x.

• If F ⪰s G and G ⪰s F , then F = G

• In terms of quantiles, F ⪰s G if F−1(t) ≥ G−1(t) for all t

Proposition. Define L(X) to be a p value based on a family of rejection regions {Rα :
α ∈ (0, 1)}. Then for any θ ∈ Θ0,

L(X) ⪰s Unif(0, 1)

Corollary. If there exists some θ ∈ Θ0 such that Pθ[X ∈ Rα] = α for all α ∈ (0, 1), then

Pθ0 [L(X) ≤ α] = α
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• This implies that under parameter θ0, the p value is Unif(0,1) distributed

• For good tests, L(X) ≺s Unif(0, 1) when H1 is true

4.3.2 Combining p values

Suppose now that the same H0 vs H1 testing problem is considered in m independent
studies. Let the p values be L1, . . . , Lm, which are independent random variables on (0, 1)
with distribution G.

• Under H0, G = Unif(0, 1) or G ≻s Unif(0, 1)

• Under H1, G ≺ Unif(0, 1)

Thus, we can rewrite the testing problem as

H0 : G = Unif(0, 1) H1 : G ≺s Unif(0, 1)

so we need a test statistic based off L1, . . . , Lm. Suppose T = T (L1, . . . , Lm) be such a
test statistic. If we reject H0 when T is large, then T (l1, . . . , lm) should be a decreasing
function in each li.

4.4 Multiple Hypothesis Testing

Consider testing H(k)
0 vs H(k)

1 for k = 1, . . . ,m. Let φ1(x), . . . , φk(x) be the test functions
of each test:

φk(X) =

1 reject H(k)
0

0 accept H(k)
0

and define αk = E0[φk(x)]. How can we choose αk such that false rejections of H(k)
0 can

be avoided?

4.4.1 Family-Wise Error Rate

Suppose all the null hypotheses are true (i.e.: the global null hypothesis holds). Define
the family-wise error rate (FWER) as

FWER(φ1, . . . , φm) = P0(∃k s.t. φk(X) = 1)
= 1 − P0(φ1(X) = 0, φ2(X) = 0, . . . , φm(X) = 0)

= 1 − E0

[
m∏

k=1
(1 − φk(X))

]
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where P0 and E0 assume the global null hypothesis holds. We want FWER(φ1, . . . , φm) ≤
α. If the φk(X) are independent, then

FWER(φ1, . . . , φm) = 1 −
m∏

k=1
E0[1 − φk(X)]

= 1 − P0(φ1(X) = 0, . . . , φm(X) = 0)

thus we can get FWER(φ1, . . . , φm) = α by taking

αk = 1 − (1 − α) 1
m

Since P0(φk(X) = 1) = αk, then P0(φk(X) = 0) = 1 − αk, so

1 − P0(φ1(X) = 0, . . . , φm(X) = 0) = 1 −
m∏

k=1
(1 − αk) = 1 − (1 − a)m

m = α

as required. On the other hand, if the φk(X) cannot be simply assumed to be independent,
then we can use Bonferroni correction:

FWER(φ1, . . . , φm) = P0(at least 1 φk(X) = 1)

= P

(
m⋃

k=1
{φk(X) = 1}

)
≤

m∑
k=1

P (φk(X) = 1) =
m∑

k=1
αk

Thus, taking E0[φk(X)] = α
m

guarantees FWER(φ1, . . . , φm) ≤ α.
The issue with controlling the FWER, however, lies in the fact that the assumption is that
all null hypotheses hold true. An alternative approach is to control the false discovery
rate.

4.4.2 False Discovery Rate

Now we no longer make assumptions about the number of true/false null hypotheses.
Define the set

S = {k : H(k)
0 is true}

where S = ∅ is a possibility. For test functions φ1, . . . , φm, define

R =
m∑

k=1
φk(X) = number of rejected null hypotheses

V =
∑
k∈S

φk(X) = number of falsely rejected null hypotheses

We want to minimize V
R

, aka the proportion of rejected null hypotheses that are falsely
rejected. For the FWER, we know that V = R since S = {all H(k)

0 }, thus

FWER(φ1, . . . , φm) = P0(V ≥ 1)
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Define the false discovery rate (FDR) as

FDR(φ1, . . . , φm) = E
(
V

R
| R > 0

)
P (R > 0) = E

(
V

max(R, 1)

)

Once again, we want FDR(φ1, . . . , φm) ≤ α. Order the p values

L(1) ≤ · · · ≤ L(m)

Define
k̂ = max

{
k : L(k) ≤ α

k

m

}
then reject all null hypotheses corresponding to L(1), · · · , L(k̂).
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