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1 Likelihood Function

Let θ be a parameter of some density f(x; θ) and consider a sample x1, . . . , xn. The likelihood
function is defined as

l(θ|x1, . . . , xn) =
n∏

i=1
f(xi; θ)

and the maximum likelihood estimator is the value θ̂ at which the likelihood function is maxi-
mized. Usually, we consider the log-likelihood function L(θ) = log(l(θ|x1, . . . , xn)).

• The score function is ∂L
∂θ

• The observed Fisher information is −E
(

∂2L
∂θ2

)

2 Hypothesis Tests

2.1 Binomial Exact Test

Let Y be the number of successes in n independent Bernoulli trials with success probability π.
Estimate π using the proportion of successes:

π̂ = Y

n

Some properties of π̂ include

• π̂ is an unbiased estimator of π

• Var(π̂) = π(1−π)
n

• π̂ is a consistent estimator of π (i.e.: π̂
p→ π)

• π̂ ∼̇ N
(
π, π(1−π)

n

)
The binomial exact test is

H0 : π = 0.5 Ha : π > 0.5 or π < 0.5

where we consider Y
n as the test statistic, so The p-value is

P (Y ≤ yobs|H0) or P (Y ≥ yobs|H0)
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depending on the test. In other words, the p-value is defined to be the probability that the we
observe the current estimate or something more extreme. Usually, we test at level α = 0.05, so
if the p-value falls below this value, we reject the null. Similarly, if the p-value is greater, we
fail to reject H0.
We can also consider the two-sided test

H0 : π = 0.5 Ha : π ̸= 0.5

In this case, the p-value is 2 min {P (Y ≥ yobs|H0), P (Y ≤ yobs|H0)}.
In the case that n → ∞, the p-value becomes more complex. Since

π̂ ∼̇ N
(

π,
π(1 − π)

n

)
we can consider the test statistic

Z = π̂ − π√
π(1−π)

n

∼ N (0, 1) by CLT

Then the p-value is P (Z ≥ |z|) (for a 1-sided test, get rid of the modulus sign).

2.2 Confidence Intervals

Assuming the test above, consider the test statistic Z ∼ N (0, 1), so P (a ≤ Z ≤ b) = Φ(b)−Φ(a)
where Φ(z) is the CDF of N (0, 1). Then at α = 0.05, since the 0.975 and 0.025 quantiles of
N (0, 1) are 1.96 and −1.96 respectively, our confidence interval for π is

P
(
zα/2 ≤ Z ≤ z1−α/2

)
= 0.95

P

π̂ − 1.96

√
π(1 − π)

n
≤ π ≤ π̂ + 1.96

√
π(1 − π)

n

 = 0.95

Notice how the bounds of the confidence interval contain the standard error
√

π(1−π)
n . How-

ever, π is what we’re estimating, so we replace π with π̂ in the CI. This produces the Wald
confidence interval

P

π̂ − 1.96

√
π̂(1 − π̂)

n
≤ π ≤ π̂ + 1.96

√
π̂(1 − π̂)

n

 = 0.95

Note that this performs poorly when the proportion of successes is very small.

2.3 Score Test

Consider
H0 : π = π0 Ha : π ̸= π0

The score function is
S(π) = ∂L(π)

∂π
= y − nπ

π(1 − π)
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and the information is
I(π) = −E

(
∂2L(π)

∂π2

)
= n

π(1 − π)

Under regularity conditions, E(S(π)) = 0 and Var(S(π)) = I(π). The test statistic we consider
is

S(π)
(I(π)) 1

2

which, under H0, simplifies to Z = π̂−π0√
π0(1−π0)

n

, which is N (0, 1) by the CLT. This is the outline

of the score test.

2.4 Likelihood Ratio Test

The likelihood function of Y ∼ Binomial(n, π) is

l(π) = πy(1 − π)n−y

Consider H0 : π = π0, under which we have l(π0) = πy
0(1 − π0)n−y. From the data itself, we

have l(π̂) = π̂y(1 − π̂)n−y. For the likelihood ratio test, we look at the likelihood ratio

l(π0)
l(π̂) =

(
π0
π

)y (1 − π0
1 − π̂

)n−y

The likelihood ratio test is derived from taking the log of both sides and multiplying by −2.
The test statistic we consider is

−2 log(Λ) = 2
[
y log

(
y

nπ0

)
+ (n − y) log

(
n − y

n − nπ0

)]
= 2

∑
observed

[
log

(observed
expected

)]

As n → ∞, −2 log(Λ) d→ χ2
1(α). Thus, the likelihood ratio test is as follows:

Consider
H0 : π = π0 Ha : π ̸= π0

Reject the null hypothesis at level α if

−2 log(Λ) > χ2
1(α)

3 Contingency Tables

A contingency table displays relationships between categorical variables, having I rows for
variable X and J rows for variable Y .
For a table 2 × 2 contingency table, we have

I(Y ) = 1 I(Y ) = 0 Total
I(X) = 1 n11 n12 n1+ = n11 + n12

I(X) = 0 n21 n22 n2+ = n21 + n22

Total n+1 = n11 + n21 n+2 = n21 + n22 n = n11 + n12 + n21 + n22

Here, nij represents the outcome of the ijth cell. Clearly,
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• Each cell has probability πij = nij

n

• Each margin total has probability π+i = n+i

n or πi+ = ni+
n

So, we have the three types of probability:

• Marginal: πi+ or π+i

• Joint: πij

• Conditional: πi|j

In practice, consider a pair of variables where X is whether or not a subject has a disease and
Y is the outcome of a subject’s diagnostic test (either postive or negative). We introduce 2
definitions:

Definition. The sensitivity is the conditional probability that a subject’s diagnostic test is
positive, given the subject has the disease.

Definition. The specificity is the conditional probability that a subject’s diagnostic test is
negative, given the subject does not have the disease.

3.1 Inference on Contingency Tables

There are 2 types of studies:

• Experimental: A study where the researcher introduces interventions and studies the
effects. Groups are usually assigned randomly

• Observational: Observe existing groups of individuals and assess outcomes, with no
attempts at intervention. We can split into 2 subgroups:

1. Observational and Propespective: See what happens to the groups of individuals

2. Observational and Retrospective: Assess to analyze events of interest that have
already happened

Suppose we are testing the effectiveness of a new drug. We split the patients randomly into 2
groups: treatment and placebo and observe if their conditions improve or not.

No Improvement Improve Total
Treatment n11 n12 n1+ = n11 + n12

Placebo n21 n22 n2+ = n21 + n22

Total n+1 = n11 + n21 n+2 = n21 + n22 n = n11 + n12 + n21 + n22

Suppose we want to measure the effect of interest π1 − π2 where π1 = π11
π1+

is the rate at
which there is no improvement after treatment and π2 = π21

π2+
is the rate at which there is no

improvement after placebo.

• Note how πi = πno improvement|i
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We can estimate π1 and π2 through observing proportions. The risk of no improvement in
treatment is

p1 = π̂1 = n11
n1+

while the risk of no improvement in placebo is

p2 = π̂2 = n21
n1+

Some properties of pi are E(pi) = πi, Var(pi) = πi(1−πi)
ni+ . Assume p1 ⊥ p2, thus for a larger

sample, we have
p1 − p2 ∼̇ N

(
π1 − π2,

π1(1 − π1)
n1+

+ π2(1 − π2)
n2+

)
by the CLT. A (1 − α)% confidence interval is computed as p1 − p2 ± zα/2

√
π1(1−π1)

n1+
+ π2(1−π2)

n2+
.

Consider
H0 : π1 − π2 = 0 Ha : π1 − π2 ̸= 0

For this test, we use the test statistic

Z = p1 − p2√
p(1 − p)

(
1

n1+
+ 1

n2+

) ∼ N (0, 1)

where p = n11+n21
n1++n2+

= n+1
n since under H0, π1 = π2 = π, which represents a collective rate at

which we observe no improvement.

3.1.1 Relative Risk

Sometimes, we’re more interested in the ratio of proportions, π1
π2

, also known as the Risk Ratio.
Again, we can use p1 and p2 to form an estimator p1

p2
. However, this results in the the ratio of

a two N (0, 1) random variables, which is Cauchy by nature.

Z1
Z2

∼ Cauchy

Cauchy distribution does not have mean nor variance, thus there does not exist a CLT argument
for this. On the other hand, it’s still possible to compute log

(
p1
p2

)
= log(p1) − log(p2), which is

normally distributed (by Delta Method). This results in a CI for π1
π2

being

log
(

p1
p2

)
± z1−α/2

√
1 − p1
n1+p1

+ 1 − p2
n2+p2

3.2 Odds Ratio

Let the probability of success be π. Then, the odds is defined as

Ω = π

1 − π
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From a contingency table, we’ll always have two categories with probabilities of success π1 and
π2. Thus, we can define the Odds Ratio

Ω1
Ω2

=
π1

1−π1
π2

1−π2

= π1(1 − π2)
π2(1 − π1)

Since it’s often the case that π1 and π2 are unknown, we can also estimate the odds ratio.
Consider the above scenario again, although with simpler variables with placeholders:

No Improvement Improve Total
Treatment a b a + b

Placebo c d c + d

Total a + c b + d n = a + b + c + d

We estimate the odds ratio
θ̂ = ad

bc

Notice that
Ω1
Ω2

= π1(1 − π2)
π2(1 − π1) = RR

1 − π2
1 − π1

For rare outcomes, we have π1 ≈ 0 and π2 ≈ 0, in which case the odds ratio would approximately
equal the relative risk.

3.3 Rates and Rates Ratio

Sometimes, it makes more sense to investigate a rate rather than a probability. This is because
patients could leave the study, or simply the probability of an event can’t be calculated realis-
tically, which renders odds and risk as an improper effect measure.
The rate parameter is the parameter of the Poisson distribution, which characterizes the rate
of occurence of the events of interest. Suppose we have a Poisson random variable with mean
µ. Let T be the total follow up time and λ be the rate of our interest. Then

µ = λT =⇒ λ = µ

T

This means the observed number of events y during the follow up time T has a Poisson distri-
bution, so Y ∼ Poisson(λT ).
We use MLE estimation to estimate the rate, since oftentimes µ is unknown. Given Y ∼
Poisson(λT ), its log-likelihood function is

L(λ) = y log(λT ) − λT

which has score function y
λ − T , so its MLE is

λ̂ = y

T

The observed Fisher information
−∂2L

∂λ2 = y

λ2 > 0

since Poisson distribution is positive.
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Definition (Risk). Risk is the probability of an event occuring within a specific time period.

It’s imperative to note that the risk and rate parameter are not the same. Unlike risk, the rate
parameter does not correspond to a follow-up period of a fixed length.

• Instead characterizes the instantaneous occurence of the outcome event at any given time

Additionally, we can also compute the rate ratio: λ1
λ0

.

3.4 Delta Method

Let θ̂ be the MLE of some distribution. 2 important properties to note are

• Invariance: If g is some injective function of θ, then g(θ̂) is the MLE of g(θ)

• Asymptotic normality: Let I(θ) be the observed Fisher information. Then θ̂
d→ N (θ, I(θ)−1)

Theorem. Suppose an(Xn − θ) d→ Z where an converges increasingly monotonically to ∞. If
g is differentiable at θ with derivative g′(θ), then

an(g(Xn) − g(θ)) d→ g′(θ)Z

By the Delta Method, if θ̂ is the MLE, then for any differentiable function g, we have
√

n[g(θ̂) − g(θ)] d→ N (0, [g′(θ)]2I(θ)−1)

We can use the Delta Method to compute the variance of log(OR). Recall that

OR = π1(1 − π2)
π2(1 − π1)

Let π̂i be the MLE of πi respectively. Then since g(πi) = log(Ωi) is injective, g(π̂i) is the MLE
of πi. By the Delta Method,

g(π̂i) ∼̇ N
(

g(πi),
1

niπi(1 − πi)

)
By computation, we can see that Cov(π̂1, π̂2) → 0, thus Cov(g(π̂1), g(π̂2)) = 0. So,

Var(log(θ̂)) =
2∑

i=1

1
niπi(1 − πi)

where θ̂ is the MLE of the odds ratio. This means

Var(log(θ̂)) = 1
a

+ 1
b

+ 1
c

+ 1
d

and a 95% approximate CI for log(θ) is

log(θ̂) ± 1.96
√

1
a

+ 1
b

+ 1
c

+ 1
d
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3.5 Independence

Definition. Random variables X and Y are related if the conditional distribution of Y given
X = x changes as x changes.

Definition. Random variables X and Y are statistically independent if the conditional distri-
bution of Y given X = x is identical for all x.

• When the rows and columns of a contingency table are independent, then πij = πi+πj+,
which implies π1+ = πi|j

3.5.1 Tests of Independence

• An odds ratio or rate ratio of 1 indicates independent variables

Consider the table

Y = 0 Y = 1 Total
X = 0 a b a + b

X = 1 c d c + d

Total a + c b + d n = a + b + c + d

The joint probabilities are πij , marginals πi+ or π+j . To test independence, consider the test

H0 : X ⊥ Y (OR = 1) Ha : X ̸⊥ Y (OR ̸= 1)

If the null hypothesis is true, then the expected value of cell (i, j) is µij = nπij = nπi+π+j .
There are three tests we consider:

1. Pearson’s χ2 test

2. Likelihood ratio test

3. Fisher’s exact test

Which test we use depends on what we fixed.
If we assume only the row margins are fixed then each nij is Binomial(ni+, πi) distributed. We
use Pearson’s χ2 test. The test statistic is

χ2 =
∑

i

∑
j

(nij − µij)2

µij

which is χ2
ν , where ν = (IJ − 1) − (I − 1) − (J − 1), where I is the number of rows, J is the

number of columns. In the 2 × 2 case, ν = 1, so the test statistic above is χ2
1 distributed.

• If one of the cells is zero, then the test statistic blows up towards infinity

– Use Yate’s Continuity Correction, which has the form

χ2
c =

∑
i

∑
j

(|nij − µij |−0.5)2

µij
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For fixed n, the cell counts follow a multinomial distribution (since n is the sum of the cell
counts). So, we have the likelihood ratio statistic

Λ = 2
∑

i

∑
j

nij log
(

nij

µij

)

which is χ2
1 under H0, so asymptotically, the two test statistics presented are equal.

For Fisher’s exact test, suppose the row and column margins are fixed (i.e.: ni+ and n+j are
fixed for each i, j), thus each cell count is Hypergeometric(n, ni+, n+j). For example, we have

P (n11 = t) =
(n1+

t

)( n2+
n+1−t

)( n
n+1

)
In the a, b, c, d notation:

P (n11 = a) =
(a+b

a

)(c+d
c

)( n
a+c

)
So, since n11 is hypergeometric, then the one sided p-value is P (n11 ≥ a). For the two sided,
define the set S = {t : P (n11 = t) ≤ P (n11 = a)}. Then the two sided p-value is∑

t∈S

P (n11 = t)

3.6 Confounding and Interaction Variables

3.6.1 Confounding

Suppose there are 3 categories, X, Y, Z, where Z has K categories and we want to know the
association between X and Y . For each fixed value of Z, we have the tables

Y = 0 Y = 1 Total
X = 0 ai bi ai + bi

X = 1 ci di ci + di

Total ai + ci bi + di ni

The marginal table cells are a = a1 + a2 + · · · + aK .
A confounding variable is a third variable when marginally associated causes different con-
clusions from the conditionals. The presence of such a variable presents bias in the marginal
association (the association with a instead of each ai). To combat this, we use the Cochran-
Mantel-Haenszel Test to test conditional independent of 2 × 2 × K tables.

H0 : Conditional independence in the 2 × 2 × K tables

Let the count in the first cell of the kth table be n11k, so

µ11k = (ak + bk)(ab + ck)
nk

Var(n11k) = (ak + bk)(ak + ck)(bk + dk)(ck + dk)
n2

k(nk − 1)

since n11k is hypergeometrically distributed. Consider the test statistic

χ2
CMH = (∑k(n11k − µ11k))2∑

k Var(n11k)
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which is χ2
1 distributed.

For the kth conditional table, the conditional odds ratio can be estimated as

θ̂k = akdk

bkck

Define weights
wk = bkck

nk

The adjusted odds ratio can be obtained by weighting the conditional odds ratios.

θ̂CMH =
∑

k
akdk
nk∑

k
bkck

n

which has variance

Var(log(θ̂CMH)) =
∑

k w2
k

(
1

ak
+ 1

bk
+ 1

ck
+ 1

dk

)
(∑k wk)2

3.6.2 Interaction

Sometimes, the conditional odds ratios at each level of Z are very different. If so, need to first
check for statistical significance between the odds ratios, so we use the Test of Homogeneity.

H0 : the odds ratios are homogeneous

Consider the test statistic
χ2

H =
∑

k

(log(θ̂k) − log(θ̂CMH))2

Var(log(θ̂k))

which is χ2
1 distributed.

If we conclude there is a statistical difference, then we say there is an interaction between Z

and X on Y (Z is an interaction term).

3.6.3 Confounding vs Interaction

For a confounding variable, we observe that the conditional effect measures are not statistically
different, and that the marginal effect is not the same from the conditional, so we estimate
the adjusted effect through weighting. For interactions, the conditional effect measures are
statistically significantly different, and the marginal effect is not the same from the conditional.
We don’t want to adjust the effect and need to produce case specific effect measures since we
want to observe the influence Z has on X for the outcome.
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