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1 Simple Linear Regression Models

1.1 SLR Basics

Definition (Linear Regression). Process of estimating a linear relationship between a
dependent and independent variable(s)

1.1.1 Estimation of a Trend

Given
Y = β0 + β1X + ε

• Y is the random response variable

• X is the fixed predictor variable

• ε is the random error

We collect sample data
(x1, y1), . . . , (xn, yn)

to estimate β0 and β1.
However, we don’t know the true population errors

εi = Yi − (β0 + β1Xi)

since we don’t know the true β0 and β1, so we consider the estimated errors (called
residuals)

êi = yi − β̂0 − β̂1xi = yi − ŷi

where ŷi is an estimated mean. We measure total error around the estimated trend using
Residual Sum of Squares (RSS)

RSS =
n∑

i=1
ê2

i =
n∑

i=1
(yi − (β̂0 + β̂1xi))2

1.2 Ordinary LSE

The line of best fit should fit snugly among the data points, so we want to minimize the
amount of error. To do this, we minimize RSS.

• Find line of best fit by finding estimate for β0 and β1 that minimize RSS

• We square the residuals so cancellation of positive and negative residuals is pre-
vented
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To perform LSE, we take partial derivatives WRT β̂0 and β̂1 of the RSS and set them
to equal 0 to obtain estimates of β̂0 and β̂1. This yields

β̂0 = y − β̂1x β̂1 =
∑n

i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx2 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

1.3 Interpreting SLR Estimate

With SLR, we are estimating mean responses to our predictor:

E(Y |X) = β0 + β1X

• β̂0 is the mean response when the predictor is 0

• β̂1 is the change in mean response for a one unit increase in the value of the predictor

After SLR, ŷ = Ê(Y |X) can be used to make predictions for specific x values

2 Multiple Linear Regression

Consider a model with multiple predictors

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi

Collect n sets of data:
(yi, xi1, . . . , xip)

2.1 Linear Regression in Matrix Form

2.1.1 SLR

Let

Y =


y1
...

yn

 β =
β0

β1

 X =


1 x1
... ...
1 xn

 ε =


ε1
...

εn


Then we can rewrite the SLR equation as an equation of matrix operations:

Y = Xβ + ε

Each row of the above equation is equivalent to the ith algebraic form:

yi = β0 + β1xi1 + εi

for i = 1, . . . , n
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2.1.2 MLR

For multiple predictors, the only change is to β and X:

β =


β0
...

βp

 X =


1 x11 · · · x1p

... ... . . . ...
1 xn1 · · · xnp


In the X matrix, each column represents a predictor, aside from the first column of 1s,
which exists to facilitate matrix multiplication since β is a (p + 1) × 1 matrix.

2.1.3 Qualitative Predictor Variables

Suppose X1 is qualitative with values “Yes”, “No”, “Maybe”, while the rest are numeric.
We can represent X1 using indicator functions:

X1 =

1 if “Yes”

0 o.w.
X2 =

1 if “No”

0 o.w.

Thus if both X1 and X2 are 0, then the entry is “Maybe”. The matrix would look like:

X =



1 1 0 · · ·
1 0 0 · · ·
... ... ... ...
1 0 1 · · ·
1 0 0 · · ·


where the first row is “Yes”, second is “Maybe”, second last is “No”, last is “Maybe”.

2.1.4 Conditional Mean and Distribution of Responses

• SLR conditions on the value of 1 predictor

– At each X value, we have a distribution of Y responses with mean E(Y |X)

• MLR conditions on the values of p predictors

– At values (x1, x2) for (X1, X2), we have a distribution of responses Y with
mean E(Y |x1, x2)

2.2 MLR LSE

We follow a similar procedure as in SLR. Given the MLR model

Y = Xβ + ε
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we get a residual vector for our estimate Ŷ

ê =


ê1
...

ên


so the RSS is

RSS = êT ê =
n∑

i=1
(yi − (β̂0 + β̂1x1i + · · · + β̂px1p))2

Theorem. Let u = aT x = xT a where a = (a1, . . . , ap is a vector of constants. Then

∂u

∂x
= ∂(aT x)

∂x
= ∂(xT a)

∂x
= a

Theorem. Let u = xT Ax where A is a symmetric matric of constants. Thne

∂u

∂x
= ∂(xT Ax)

∂x
= 2Ax

Since we want to find an expression for β̂, we have

RSS = êT ê

= (Y − Xβ̂)T (Y − Xβ̂)
= (Y T − (Xβ̂)T )(Y − Xβ̂)
= Y T Y − Y T Xβ̂ − (Xβ̂)T Y + (Xβ̂T )(Xβ̂)
= Y T Y − Y T Xβ̂ − Y T Xβ̂ + β̂T XT Xβ̂

= Y T Y − 2Y T Xβ̂ + β̂T XT Xβ̂

Thus
∂RSS

∂β̂
= −2XT Y + 2XT Xβ̂ = 0 =⇒ β̂ = (XT X)−1XT Y

assuming XT X is invertible. Thus our fitted values Ŷ are

Ŷ = X(XT X)−1XT Y

Note that the matrix X(XT X)−1XT is called the hat matrix.

2.3 Interpreting MLR Estimate

The estimation and interpretation of coefficients in MLR conditions on all other predictors

• Consider only 1 fixed value of all the other predictors when interpreting the coeffi-
cient of interest
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2.3.1 Interpreting the Coefficients in MLR

• β̂0 is the mean response when all the predictors are 0

• β̂j is the mean change in response for a 1 unit increase in Xj when all other predictors
are held fixed

2.3.2 Interpretation with Indicator Variables

Suppose we have a qualitative predictor:

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + β̂3I(A) + β̂4I(B)

This will give us different intercepts but common slopes(since indicator variables
only take on 0 or 1 in value), thus our intercepts are either β̂0, β̂0 + β̂3, or β̂0 + β̂4.
The interpretation of these coefficients must compare each level to the reference level (ie:
when both I(A) and I(B) are 0)

2.3.3 Interpretation with Interaction Variables

An interaction term allows the relationship between response and one predictor vary
according to the values of a second predictor

• Allows us to explore the joint effect of Xi and Xj on Y by multiplying them

ŷi = β̂0 + β̂1X1 + β̂2X2 + β̂3X1X2

This will give us (potentially) different intercepts and different slopes. The po-
tentially different intercepts depends on whether or not X2 is categorical.

• Graphically, the difference between the two is a model with interaction term will
showcase different slopes, a model without will showcase same slopes

3 Linear Regression Assumptions

In order to conduct linear regression, we must verify the following conditions hold:

1. Linearity of the relationship

• Verifies that the relationship of the population is truly linear

E(ε|X) = 0 or E(Y |X) = Xβ or Y = Xβ + ε

• Ensures we estimate coefficients unbiasedly

2. Uncorrelated Errors
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• Each data point in population must be uncorrelated with the others

Cov(εi, εj) = 0 or Cov(yi, yj) = 0

• Ensures correct precision of estimates

3. Constant Error Variance

• Conditional on any value of X, the variance of errors is constant and the same
for all X values

Var(ε|X) = σ2I or Var(εi|X) = Var(yi|X) = σ2

• Ensures that reasonable estimates of variability for all conditional means are
obtained

4. Normality

• All conditional distributions must have the same shape

• ε and Y ’s distributions must be the same shape for all values of X

ε|X ∼ Nn(0, σ2I) or Y |X ∼ Nn(Xβ, σ2I) or εi ∼ N (0, σ2)

◦ Notice how regardless of value of X, the variance stays the same (constant
variance assumption), while the expected value is consistent with those
from the linearity assumption

• Allows to utilize properties of normal random variables for inferences (useful
later)

3.1 Verifying Assumptions

The linear regression assumptions can be captured by

ε|X ∼ Nn(0, σ2I)

Since residuals are sample analogues of ε, they capture noise leftover after estimating a
trend between Y and X

• Check unbiasedness:
ê = Y − Ŷ = X(β − β̂) + ε ≈ ε

• If the above does not hold, then we can conclude that a violation of assumption
has occured
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3.1.1 Verification through Residual Plots

We can also verify the assumptions through the following types of plots:

• Residual vs each predictor scatterplot

◦ For linearity, uncorrelated errors and constant variance

• Residual vs response scatterplot

◦ Also for linearity, uncorrelated errors and constant variance

• Normal Q-Q plots

◦ For normality

For scatterplots, look for the following cues:

• Any systematic pattern, such as curves would indicate a violation of linearity

– Note that vertical strips are allowed in residual predictor scatterplots since
this represents the discrete behaviour of the data

• Large groups of points, such as clumps rather than than truly scattered points
would indicate a violation of uncorrelated errors

• Any sort of fanning pattern, either increasing or decreasing, would indicate a vio-
lation of constant variance

For QQ plots, look to make sure that the line of scattered points mostly follows the
normal line; if not then normality is violated.

3.1.2 Additional Conditions for MLR

If the relationship between predictors or predictor and response is too complex, then
residual plots become unreliable since any relationship could appear as an assumption
violation

• Given that in MLR there are multiple predictors, patterns in plots can’t be used to
identify specific violations and can give misleading information, although residual
plots can always be used to verify that a valid model has been fit

Thus 2 extra conditions must be met in order to use residual plots in MLR:

1. Conditional mean response: the mean responses conditional on X taking on a value
xi are a single function of a linear combination involving the elements of beta

E(Yi|X = xi) = g(β0 + β1xi1 + · · · + βpxip)
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2. Conditional mean predictor: the relationship between any 2 predictors can only be
at most linear:

E(Xi|Xj) = a0 + a1Xj

We check the first one using a scatterplot of response vs fitted values, the second using
pairwise scatterplots of all predictors and observe the trends in all graphs (respectively, if
randomly scattered or if not following a linear pattern, then we can’t use residual plots)

3.2 Mitigating Violated Assumptions

3.2.1 Variance Stabilizing Transformations

• Specifically targets violated of constant variance

• Transformation will only be applied to the response variable

Let f be a function of the response, thus

Var[f(Y )] = [f ′(E(Y ))]2Var(Y )

If Var[f(Y )] is constant, then f is a variance stabilizing transformation.

• We say f stabilizes variance

• Since f makes variance constant, then the modified model with f(Y ) as the response
satisfies the constant variance assumption

• If the data is right-skewed, consider a log transformation

3.3 Box-Cox Transformation

• Used to improve normality and linearity

• Is a power transformation

• Can be used on response, predictors, or both

The Box-Cox method uses MLE to estimate the power transformation. By the normality
assumption, we know that

Y |X ∼ N (Xβ, σ2I)

thus our log-likelihood function is SLR is

log(L(β0, β1, σ2|Y )) = log
(

1
(σ

√
2π)n

exp
(

−
n∑

i=1

(yi − β0 − β1xi)2

2σ2

))

= −n

2 log(σ2) − n

2 log(2π) − 1
σ2 log

(
n∑

i=1
(yi − β0 − β1xi)2

)
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= −n

2 log(σ2) − n

2 log(2π) − 1
σ2 log(RSS)

To perform a Box-Cox transformation on Y , modify the RSS so

RSS =
∑

(ΨM(Y, λ) − β0 − β1xi)2

where ΨM(Y, λ) is a modified power transformation applied to Y . After finding the MLE
of λ, we take Y λ as the transformation

• The original Box-Cox is very complicated, so taking Y λ allows for a more simple
transformation that still gives a line of best fit that minimizes RSS and gets close
to normality, effectively satisfying the normality assumption

• If λ is effectively 0, use ln(Y ) instead

If modifying a predictor, do the same and take Xλ
i .

If performing a transformation simultaneously, define RSS in SLR as

RSS =
∑

(ΨM(Y, λy) − β0 − β1ΨS(X, λx))2

The MLE will be an ordered pair (λy, λx), which we take Y λy and Xλx as our transfor-
mations.
We can also pick even simpler λ values, for example, if λ = 0.10102 we can just take
λ = 0 and use ln instead of taking the variable to the 0.010102 power. Pick λ values near
easier values to work with, such as 1

2 , 1
3 , 1

4 , −1
2 , −1, etc.

3.4 Impact of Violated Assumptions

For any estimate, we need a measure of error or variation in order to measure how different
samples may vary in value.

• This requires the sampling distribution, whose properties are given by the assump-
tions like the mean, variance, or shape

• When the assumptions don’t hold, then these properties no longer hold, which
implies taking different samples could have a large impact

3.4.1 Sampling Distribution of the Estimated Coefficients

By the assumptions,
Y |X ∼ N (Xβ, σ2I)

Our estimator of β is
β̂ = (XT X)−1XT Y
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If the assumptions hold, we can necessarily find a sampling distribution of β̂. Suppose
they do. By linearity of Normal distributions,

AY ∼ Nn(AµY , AΣAT ) or
∑

i

aiyi ∼ N
(∑

i

aiµi,
∑

i

a2
i σ

2
i

)

where A is a matrix of constants. Thus, the sampling distribution of β̂ is

Nn(β, σ2(XT X)−1)

Notice that this tells us that Biasβ(β̂) = 0, which satisfies linearity, β̂ are correlated, and
β̂ has the same constant σ2 as the errors.
If there so happens to be violations, this distribution tells us that

• If linearity is violated, β̂ is no longer an unbiased estimator

• If constant variance is violated, we no longer have a single σ2 as part of the variance,
thus we have an over-/under-estimation of error

• If uncorrelated errors is violated, we have an over-/under-estimation of variance

• If normality is violated, the estimator doesn’t have a normal distribution

Properties:

• E(β̂|X) = β

• Cov(β̂|X) = σ2(XT X)−1

• The standard error of β̂j is the standard deviation of β̂j = σ
√

(XT X)−1
(j+1,j+1) which

is the square root of the j + 1 element on the diagonal of the covariance matrix of
β̂

4 Inference on Regression Components

However, σ2 is unknown, so we have to perform inference to estimate a value. Consider
the estimator

s2 = RSS

n − p − 1 = êT ê

n − p − 1
which we can use in practice with

s2(XT X)−1
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as a covariance matrix. However, this adds sampling variation since s2 is an estimated
value and has its own sampling distribution satisfying

β̂ − β√
s2(XT X)−1

∼ Tn−p−1

where Tn−p−1 is T distribution with n − p − 1 degrees of freedom (n observations, p + 1
estimated parameters).

4.1 Inference on Coefficients

With the estimator s2, we’ve estimated the sampling distribution of β̂. Consider the two
forms of inferential processes:

• Confidence Intervals: estimate − critical value × standard error, which represents
a (1 − α)% chance that one of the (1 − α)% confidence intervals overlapped the
truth

• Hypothesis Test: A test statistic estimate−truth
standard error is built where we compare the esti-

mated value to the proposed truth, and the more different the estimate is (i.e., the
larger the test statistic), the more unlikely the proposed truth is true

Consider inference for individual coefficients βj.
The (1 − α)% confidence interval for βj is

β̂j ± tα
2 ,n−p−1s

√
(XT X)−1

(j+1,j+1)

where tα
2 ,n−p−1 is the α

2 quantile of the T distribution with n − p − 1 degrees of freedom,
(XT X)−1

(j+1,j+1) is the (j + 1, j + 1) element of (XT X)−1 (note how s
√

(XT X)−1
(j+1,j+1) is

approximately equal to the standard error of β̂j). This interval represents that (1 − α)%
of all intervals computed using data repeatedly from the same population will contain
the true value of βj

For a hypothesis test on βj, we consider a null hypothesis H0 : βj = β0
j , where β0

j is the
hypothesized true value (usually 0). Construct a test statistic

t∗ =
β̂j − β0

j

s
√

(XT X)−1
(j+1,j+1)

Regardless of which alternate hypothesis we test, we keep the same test statistic. If

• |t∗| > tα
2 ,n−p−1, reject the null

• If P (|Tn − p − 1| ≥ |t∗|) < α (i.e.: the p value is lower than the significance level),
reject the null
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By rejecting the null hypothesis, we conclude that βj ̸= 0, so there must exist a linear
relationship between Y and Xj.

4.2 Inference on Mean Response

Since we estimate E(Y |X) using Ŷ = Xβ̂, we can also construct confidence intervals
for Ŷ and perform hypothesis tests. Treat each mean response individually: for each
xT

0 =
[
1 x1 · · · xp

]
estimate ŷ0 = Ê(Y |X = xT

0 ) = xT
0 β̂. The sampling distribution of

ŷ0 is
ŷ0|X, x0 ∼ N (xT

0 β, σ2xT
0 (XT X)−1x0)

As before, we estimate σ2 using s2, satisfying

ŷ0 − xT
0 β√

s2xT
0 (XT X)−1x0

∼ Tn−p−1

(1 − α)% confidence interval for y0 = xT
0 β is

xT
0 β̂ ± tα

2 ,n−p−1s
√

xT
0 (XT X)−1x0

For hypothesis test, we take H0 : y0 = y0
0 and construct a test statistic

t∗ = ŷ0 − y0
0

s
√

xT
0 (XT X)−1x0

Reject the null hypothesis under the same conditions as for inference on β̂.

4.3 Prediction Intervals

Since the regression model only predicts values for E(Y |X = x0), we want to make a
prediction about the true y0, which is likely not equivalent to E(Y |X = x0). We need to
consider prediction error:

y0 − ŷ0 = (xT
0 β − ŷ0) + ε0

Consider the distribution of prediction error: by our assumptions

y0 − ŷ0|X, x0 ∼ N (0, σ2[1 + xT
0 (XT X)−1x0])

Since σ2 is unknown, estimate it with s2.
Since we can’t predict an actual value, instead consider a prediction interval: a range of
possible values for an actual response.

xT
0 β̂ ± tα

2 ,n−p−1s
√

1 + xT
0 (XT X)−1x0

The prediction interval is centered at ŷ0 and is wider than the CIs for E(Y |X = x0)
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since the extra σ2 term in the distribution

• Includes variation in estimating conditional mean and variation around conditional
mean

The interpretation has the same idea: these are the most likely (1 − α)% values the
random variable could take.

5 Decomposing Variance

5.1 Sum of Squares

By the assumptions, we know that

ε ∼ Nn(0, σ2I)

Recall that fitting a linear model minimizes the RSS (aka the variation around the line).
This means that if we see a plot with less variation around the trend, the linear trend is
more prominent as the predictors are able to explain better the variation.

5.1.1 Sources of Variation in Regression

The variation observed in the response is quantified by the Total Sum of Squares:

SST =
∑

(yi − ȳ)2

Each predictor added to the model for y is able to explain a portion of this variation.
Notice that SST is a function of the sample variance of y. As more predictors are added,
more variation is able to be explained.
The overall variation explained by the predictors is the Regression Sum of Squares:

SSreg =
∑

(ŷi − ȳ)2

The leftover variation left unexplained after fitting the model is the Regression Sum of
Squares:

RSS =
∑

(yi − ŷi)2

Note that
SST = SSreg + RSS

By minimizing the RSS, we minimize the amount of variation unexplained by the pre-
dictors, so most of the variation makes sense and we can conclude a stronger relationship.
By definition, each of the Sums of Squares has a certain number of degrees of freedom:

1. SST has n − 1 degrees of freedom
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2. SSreg has p degrees of freedom

3. RSS has n − p − 1 degrees of freedom

5.2 ANOVA Test

Recall that in MLR, the T-test on the coefficients can only say if the predictor is linearly
related to the response in the presence of others. The test is not able to give an overall
notion on whether or not a linear relationship exists between the predictors and response
in the first place.
A significant linear relationship means that a significant amount of variation is able to be
explained by the model, so in theory we want SSreg to be large relative to SST . However,
given every dataset is different, then the definitions of SSreg and SST do not allow us
to simply observe the ratio of SSreg to SST given each dataset will have a different
SST . However, in decomposing SST , a model where SSreg/SST is large necessarily
requires RSS/SST to be small. Therefore, the test of overall significance checks if SSreg

is significantly larger than RSS.
We test

H0 : β1 = 0 H1 : β1 ̸= 0

where we we split our vector of coefficients into

βT =
[
β0 β1

]
Under the assumptions of the null hypothesis, consider the test statistic

F ∗ =
SSreg

p
RSS

n−p−1
∼ F (p, n − p − 1)

Dividing each SS quantity by its degrees of freedom standardizes the quantity and gives
the Mean Squares Regression and Mean Squares Residual quantities respectively. Then
following the procedure of the hypothesis test, if F ∗ > F(1−α),(p+1,n−p−1), or in other
words, the p value < α, we reject H0 at level α and conclude a statistically significant
linear relationship exists for at least one predictor.

5.3 Partial F Test

Suppose a perform an ANOVA test and conclude that at least one predictor is related to
Y , then after performing T tests on each predictor, we conclude that only a small subset
of predictors of significantly related. The Partial F Test tests whether or not the simple
model with only this subset is as good as the model with all the predictors (i.e.: tests
if we can remove predictors or not). If the simple model is just as good, then the SSreg
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should be similar and equivalently, the RSS should be similar. If the smaller model has
a much larger RSS, then we can’t remove all insignificant predictors at once.
The Partial F Test compares 2 models:

1. Full model with p predictors

2. Reduced model with p − k predictors

Each model uses the same data and response so the SST remains the same. However,
by definition of RSS, a model with more predictors will always result in a smaller RSS,
which would imply a larger SSreg over the model with less predictors. As such, we adjust
each quantity using its respective degrees of freedom.
We test

H0 : β2 = 0 H1 : β2 ̸= 0

where
βT =

[
β0 β1 β2

]
where β2 is a vector of k coefficients of the removed predictors, β1 is a vector of p − k

coefficients of the predictors we keep. Under the assumptions of the null hypothesis,
consider the test statistic

F ∗ =
RSSdrop

k
RSSfull

n−p−1

∼ F (k, n − p − 1)

In hypothesis fashion, if F ∗ > F(1−α),(k,n−p−1), then we reject the null hypothesis and con-
clude that the additional SSreg from the k removed predictors explains a lot of variation,
so we want to keep these predictors. However, if the null hypothesis were to be accepted,
then we conclude there does not exist a significant linear relationship between Y and any
of the k predictors.
In general, the order of tests in an analysis is

ANOVA test −→ T test on each individual coefficient −→ Partial F Test

It’s also worth noting that for a partial F test, we need to verify assumptions of both the
full and reduced models.

5.4 Goodness of a Model

Since each dataset has a different SST , then working on different responses means a
larger SSreg could be a result of an overall larger SST . So, we standardize the variation
explained by the SST so its no longer dependent on the starting variation. Define the
Coefficient of Determination

R2 = SSreg

SST
= 1 − RSS

SST
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R2 represents the proportion of variation in the response explained by the model. Re-
member that comparing two models with a different number of predictors will always
result in the larger model having a larger SSreg, so a larger model will also always have
a larger R2 even if the extra predictors are not significant. So, we consider the adjusted
R2 by adjusting using the degrees of freedom:

R2
adj = 1 −

RSS
n−p−1

SST
n−1

Note that this adjusted quantity does not have the interpretation of the proportion of
variance that is explained by the model; it only says that a bigger model is better only if
the SSreg has increased enough to compensate for adding complexity.

5.5 Problems With Related Predictors

Recall that the conditional mean predictor condition specifies that the relationship be-
tween each predictor is at most linear. Ideally, we want no relationship between the
predictors; a linear trend means the predictors are correlated (collinear).

5.5.1 Rank of Design Matrix and Correlation

If we have perfect correlation (i.e.: 1 or −1), then this means one predictor is perfectly
related to another. This is an issue since we would have a column of the X matrix being
a linear combination of others, thus XT X is no longer invertible.

5.5.2 Multicollinearity

Multicollinearity is when more than 2 predictors are related. This is an issue since the
model won’t be able to distinguish how much variation is due to only X1 vs only to X2.
Some issues arising from multicollinearity are

• Wrong estimated coefficients: coefficients might have the wrong sign compared to
literature

• Contradictory significance: many predictors might be insignificant when the overall
F test is highly significant

• Inflated variances: standard errors of estimated coefficients are much larger than
they should be

To check if multicollinearity is present, we can look at the correlation matrix or conditional
mean predictor pairwise scatterplots, although the issue with these is that we can only
compare 2 predictors at a time and we can’t consider the conditionality of the predictors
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on one another nor with the response. Thus, we used a measure called the variance
inflation factor (VIF). Notice how for any model, we have

Var(β̂j) = 1
1 − R2

j

× σ2

(n − 1)s2
xj

for all j = 1, . . . , p. The VIF is the term

1
1 − R2

j

where R2
j is the R2 from a model which includes Xj as a response. Notice how if R2

j grows
towards 1, then the VIF increases in value, which indicates inflated variance. Since R2

j

gives how much variation is is explained by the model including Xj as a response, then as
this variation increases, it tells us that the relationship between Xj and other predictors
is higher, thus the V IF increases. Generally, we use a cutoff of 5.
The are 2 main ways to deal with multicollinearity:

1. Collect more data

2. Respecify the model

6 Problematic Observations

6.1 Leverage Observations

Definition (Leverage observation). An observation that is very distant from the center
of the X space that may change Ŷ .

These points have the potential to shift the regression line but won’t always do it. To
find leverage points, we consider the hat matrix.
Notice that since Ŷ = Xβ̂ and β̂ = (XT X)−1XT Y , then Ŷ = HY , so

ŷi = hiiyi +
∑
j ̸=i

hijyj

The hiiyi term represents the effect that yi has on its own fitted value. Thus, we call
the diagonal elements hii the leverage of observation i. These values give a metric on
the impact the value of yi has on ŷi. Since H is idempotent and tr(H) = p + 1, then
0 ≤ hii ≤ 1, so the fraction of ŷi due to to yi vs the other responses is given by hii. If
hii is close to 1, then this implies the other hij are all 0, thus ŷi ≈ yi. This means that
a different line may have been estimated if this observation wasn’t used. Notice we use
the interpretation of may have given leverage points only have the potential to shift the
line. If hii > 2(p+1)

n
, then this point is a leverage point.
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6.1.1 Outliers in Regression

A regressional outlier is a point that is very far from the trend/conditional mean. To
determine these points, we consider the residuals. By definition,

ê = Y − Ŷ = Y − HY = (I − H)Y

thus we have
êi = (1 − hii)yi −

∑
j ̸=i

hijyj

Since 0 ≤ hii ≤ 1, then the impact the response yi has on êi depends on its distance in
the X space hii, so the higher the leverage, the lower the weight of yi on êi. Note that
the residuals do not have constant variance:

Cov(ê | X) = Cov((I − H)Y | X) = σ2(I − H)

since the I −H matrix contains different values depending on the sample taken. Further,
this shows that

Var(êi | X) = σ2(1 − hii)

To achieve constant variance, standardize each êi by its variance

ri = êi

s
√

1 − hii

If this value if outside of the interval [−2, 2], then the point is a regressional outlier.

6.2 Influential Observations

Influential observations can influence the model estimation in 3 ways:

1. Affect all fitted values

2. Affect its own fitted value

3. Affect how at least one coefficient is estimated

We observe this through delete-one measures: deleting a single observation and fitting
new models.

6.2.1 Influential on all Fitted Values

We consider a measure called Cook’s Distance. First, fit a model with all n observations.
Then, refit the model using n − 1 observations. The difference in estimated trend of the
two models tells us the influence of the deleted observation on all fitted values. Instead
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of fitting n different delete-one models, use

Di = r2
i

(p + 1)
hii

(1 − hii)

The above quantity incorporates effect due potentially to being distant from the X space
or being far from the estimated trend.

6.2.2 Influential on own Fitted Value

Here we use a different measure called DFFITS. First, fit a model with all n observations,
then refit using n − 1 observations. The change in ŷi values, accounted for variation, is
how influential the point is on its own fitted value. Again, rather than fitting n models,
we use

DFFITSi =
(

hii

1 − hii

) 1
2 êi

s(i)
√

1 − hii

where s2
(i) is the sample variance from the model omitting observation i.

6.2.3 Influential on Estimated Coefficients

Here we use yet another measure called DFBETAS. We observe how each individual
coefficient changes with and without each observation.

DFBETASj(i) = β̂j − β̂j(i)√
s2

(i)(XT X)−1
j+1,j+1

where β̂j(i) is the coefficient of xj from the model without point i.

6.3 Addressing Problematic Observations

Each measure introduced quantifies the extent of each potential issue, so we define cutoff
values for each metric to know when the amount of leverage, outlying-ness, and influence
is substantial.
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It is important to note that unless there is a contextual reason, do not remove problematic
observations and simply note them and their impact as a limitation of the model.

7 Model Selection

For model selection, we need to consider the purpose of the model: either prediction or
description. If we’re predicting using the model, then extra predictors will help explain
more variation and have a better accuracy if not over-fitted. If the purpose is description,
then too many predictors will hurt interpretability. Thus, we need to use model selection
to select the best model for our purposes.

7.1 Numerical Measures of Goodness

We introduce 2 measures based on the log-likelihood function of σ2. Because it’s not as
simple as a model is better if it has more predictors, we introduce penalty terms in order
to control for added X’s.
Akaike’s Information Criteria (AIC)

AIC = n ln
(

RSS

n

)
+ 2p

where the penalty term is 2p.
Bayesian Information Criteria (BIC)

BIC = n ln
(

RSS

n

)
+ (p + 2) ln(n)

where the penalty term is (p + 2) ln(n). Note that the penalty term for BIC is smaller
than that of AIC because the BIC includes sample size. As such, the BIC is more likely
to favour simpler models.

• For both the AIC and BIC, a smaller number indicates a better model

7.2 All Possible Subsets Model Selection

There are 2 steps to performing this:

1. Compare models of each size using adjusted R2

• Choose model with highest R2
adj in each group

2. Use R2
adj, AIC, AIC corrected, BIC to pick the best of the best

There are pros and cons of this method. The pros include that all possible models are fit
and compared, and there’s a certain level of flexibility in our definition of best. However,
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with a large number of predictors, this can be very impractical. Furthermore, the best of
each subset does not consider model issues, so we can perform this without assumptions
and the method does not account for multicollinearty or problematic observations. This
means the result may not be reliable.

7.3 Automated Selection Methods

These methods use the AIC or BIC instead of adjusted R2 to decide between models.
There are 3 different types:

1. Forward selection: start with intercept model and add predictors

2. Backward selection: start at full model and remove predictors

3. Stepwise selection: iterate between forward and backward

At each step, the model from the previous step is taken and each possible predictor
available is added or deleted. We compute the AIC or BIC for each and the smallest
value is chosen. This chosen model is then the starting model for the next step, and once
no smaller AIC or BIC is produced, we take the last chosen model as the final. In R, we
do selection using the stepAIC function, specifying k = 2 for AIC, k = log(n) for BIC.
We also need to specify direction, either “forward”, “backward”, or “both”.
Again, there are pros and cons to this. The pros are that its less intensive given we’re not
considering all possible subsets. It also gives an idea of the preferred model, though this
may not be the best one. Stepwise also considers the conditional nature of regression.
However, the cons are that all methods may not agree on the same preferred model.
Additionally, this still runs in the presence of model violations or other issues, and also do
not consider context of data (i.e.: indiscriminately removes predictors). While automation
methods save time when p is large, the risk of not getting the best model exists since not
every subset is considered, thus automation only gives an idea of the best model.
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