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1 Change of variable

1.1 Single variable

Let X be a R-r.v. with PDF fx and #: R — R be injective and strictly monotonic. Let
Z = B(X). Then
x(BHEDIBTHE))T = € BR)
fz(z) =
0 otherwise

1.2 Multivariable

Let X be a Re-random vector with PDF fx : R? — [0, 00) and 3 : R? — R be a function,
and Z = $(X) be a random vector. Let (Sg)reno partition R? (ie: U, Sy = R and for all
i,j eNY i #£j = 5,NS; =0). Suppose Js,dV =0 and for all k € N, Sy is open and
Br := s, is injective and Dfj(a) (Jacobian of fy at a) is invertible for all a € Sy (B is
a diffeomorphism). Then

0 otherwise

F2(2) = {fx(ﬁl(Z)) det D3~Y(z)| 2z € B(Sk),k €N

2 Statistical inference introduction
Definition. Let (€2, %, P) be a probability space.
e A random sample of size n is a set of r.v. (X1,...,X,,)

e An observed sample is a set of constants (z1,...,x,)

Definition. A statistical model is a family of PDFs given by

{f@iHED}

where D is the domain of 9.
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Definition. (X;);en are mutually independent if P(N;c;{z; € An}) = L P(x; € A))
for any finite / C N and any A;, As,...,C R.

Definition. If we write (Xi,...,X,) e f, where f is a PDF, we mean (X3,...,X,,) are
mutually independent and X; all have a PDF of f

3 Sums of random variables from a random sample

Definition. Let (Xi,...,X,) be a random sample.
« X := &t g the sample mean
e §%:=-L37 (X; — X)? is the sample variance
e S :=+/52 is the sample standard deviation
X, 5% and S are all random variables and statistics.
Definition. Let (xy,...,x,) be an observed sample.
o T := BF=dIn jg the observed sample mean
o s%:= 3" (x; —T)? is the observed sample variance
e s:=+/s? is the observed sample standard deviation
Theorem. Let y,..., 2, be an numbers and 7 = #+=F2 . Then
1. min, >0 (7 —a)? = X0 (v — T)?
2. (n—1)s? =" (v; —72)? =X 22 — nT?

Lemma. Suppose (Xi,...,X,) % f. Let g : R — R be such that E|g(X;)| < oo and

E|g(X1)?| < co. Then
« E(XL, 9(Xi)) = nE(9(X1))
o Var (3L, 9(X;)) = nVar(g(X1))

Theorem. Suppose (X71,...,X,,) i

and Var(X;) = o2. Then

[ with E|X;| < oo and E|X?| < co. let E(X;) = u

1. E(X)=u
2. Var(X) = %2

3. E(S?) = o?
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Generalized Chebyshev’s Inequality: If Y is a R-r.v., then

E(|Y|P
B2 < D0 ve s 0.pe o0

In particular, if p = 2, then we get the inequality from STA257.

Theorem (Distribution of Independent Sums). If X, Y are independent continuous ran-

dom variables with respective densities fx, fy, then the density of Z = X + Y is

Fo() = [ fxw) iz = w)du

4 Sampling from the normal distribution

Definition. If a random variable Z has PDF f;(z) = a\}ﬂ exp (—(22;‘;)2) where 1 € R

and ¢ > 0, then we say Z ~ N(u,c?).

Lemma. a) If Z ~ N(u,0?), then E(Z) = p and Var(Z) = o2.
b) Let Z; ~ N(ui,0%) and Zy ~ N(ug,03). If Z; WL Zy, then aZ, + bZy ~
N(apy + bug, a*o? + b*03)
c) Let Z; ~ N(u,0?) and (Zy,...,7Z,) be mutually independent. Then,
iy @iZi ~ N (30 aipts, Xy a3 07)

i=1"1"1q

Definition. Let Z ~ N(0,1). Then, Z? has x? distribution with 1-degree of freedom.
Let (Z1,...,Z,) S N(0,1). We say 37 ; Z? has x? distribution.

The PDF of x2 is

ﬁajg ez >0
0 otherwise

where
[(z) = / r* e "dr, 2 > 0 L(k) = (k—1)!
0

Notice that T (%) = /7, so the PDF of x? is

Ate 2 x>0

fla) = VIV
0 otherwise

Lemma. Let (X3,...,X,) be mutually independent. If X; ~ x%,, then

n
2
i=1

Theorem. Let (X1, ..., X,) " N(u,02). Then
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1. X 1 52

2. X ~ N(u,0%/n)

n— 2
3. % ~ X%—l

Note that b) is useful for error analysis when estimating p with a known o?.

— € \/n 22 /N z?
P|X —pl >¢) = /_OO \/\/Z;Wexp (—202> dar:—i—/(E \/\/%exp (—202> dx

c) is useful for finding the PDF of f—; If f is the PDF of x2_,, let §(z) = -5, thus
B >0and 7 (y) =(n—1)y = (B7') =n—1. Then

n—1

50 =10 = 1)) =1) = B

To perform actual estimations of p and o, we consider the random variable f/\_/% ~

N(0,1). If g is unknown but we know o, then p is the only unknown quantity and we
can use this random variable to estimate p (give confidence interval, etc.).
However, if we don’t know o, then we can use the random variable S = /52 to estimate

o and then perform error analysis (since E(S?) = 0?). Thus, we have a random variable
X—p
S/v/n
Definition. Let (Xi,...,X,) S N(0,1). The random variable presented in (1) has

Student’s t-distribution with (n — 1)-degrees of freedom.
A random variable T has Student’s ¢t-distribution with p degrees of freedom if 7" has PDF

r(e) 1 1

(1)

fT<t> = ) — T ~t
r() Vm(1+ﬁ)% ’
)
Definition. Let (X1, ..., X,) be a random sample from a N(uy,0%) population and let
(Y1,...,Y,,) be a random sample from a N(uy, o) population. The random variable
Sy /oy

has Snedcor’s F-distribution with n — 1 and m — 1 degrees of freedom.
A random variable F' has F-distribution with p and ¢ degrees of freedom if F' has PDF

P (vt .
fr(z) = <2>

) oo

Let (X3,...,X,) and (Y7,...,Y,,) be random samples as defined in the above definition.

[NIS]

p_1
O<xr <o
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2 2
We can compare relative variability (ie: Z—?f) by observing g—éf Notice the relation
Y Y

S%/Sv _ Sx/ok

2 2 02 /.2
0x0y SY/UY

From an above Theorem, we know that (n;%)sg( ~ x%_, and (7”;7?5% ~ X2 _,. Addi-
X Y
tionally, the quantity presented has F),_;,,—; distribution by definition. Observing the

expected value, we have

E(Fy 1) =E ( Y2, /(n—1) )

Xin—1/(m —1)
Xo 1 m—1

=E{— |E| —5— independence
n—1 Xm—1

5 Convergence

Definition. A sequence of R-r.v.s (Y},),en converges in probability to a random variable
Y if for all e > 0,

lim P(|Y, = Y| >¢) =0 <= lim P(|Y, - Y| <¢)=1

n—oo

If so, we write Y, 5y,

5.1 Converges in probability

Theorem (Weak Law of Large Numbers). Let (X;);en be an iid sequence of R-r.v.s with

finite mean y and finite variance 02 < oo. Define X = L 3" | X;. For every € > 0,

lim P(| X, —p|<e)=1

n—oo
That is, X, — [.

Proof. Fix ¢ > 0. By Chebyshev’s Inequality, we have P(|X,, — u| > ¢) < w =

Var(Xn) _ Ly Taking n — oo, we have 5722 — 0, thus X, LN 1 by definition. |

g2 ne

Theorem. Suppose (Y,,),en converges in probability to Y. Let h : R — R be continuous.
Then, the sequence of random variables {h(Y},)}nen converges in probability to A(Y).
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5.2 Almost surely convergence

Definition. A sequence of R random variables (X;)i € N converges almost surely to X
if for all € > 0,
P(lim | X, — X|<¢)=1
n—o0

If so, we say X,, =23 X.
Note that almost surely implies convergence in probability, but not vice versa.

Theorem. Let (Y},),en be a sequence of random variables such that Y, 225 Y. Let
h : R — R be continuous. Then, the sequence (h(Y,))nen converges almost surely to
h(Y').

Theorem (Strong Law of Large Numbers). Let (X;);en be iid R-r.v.s and X a R-r.v.
Suppose E|X;| < 00,E|X?| < oo and E(X;) = p and Var(X;) = 0? < oo. Define
X, = % * 1 X;. Then X, £ .

5.3 Convergence in distribution

Definition. A sequence of R-r.v.s (X, ),en converges to a R-r.v. X if

lim Fyx, (z) = Fx(x)

n=oo
at all x at which F'x is continuous. If so, then Y, Dy,

Theorem. If Y, it Y, then Y, Dy,

A case where the converse is true is presented in the following theorem
Theorem. If Y, Dy = ¢, then Y, 5y,

Theorem (Central Limit Theorem). Let (X;);en be iid with E|X;| < oo and E|X?| < cc.
Let E(X;) = u and Var(X;) = o2. Define X,, = %Z?:l X, and Y, = @(Yn — ). Then
Y, 2 Z ~ N(0,1).

 Notice this theorem does not depend on the assumption that all X; are N(0,1)
distributed

Theorem (Slutsky’s). Let (Y},)nen and (Z,)n € N be sequences of random variables with
Y, 2y Y and Z, L, ¢ for some ¢ € R. Then we have

e Y, + 27, 2y e
« 7Y, 2 cy

Additionally, if ¢ > 0, then we have ;—Z L, %
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Suppose (X1, ..., X,) % f. Suppose E(X;) = p1 < 0o and Var(X;) = 02 < co.
Suppose we know o but not pu. Then we can use X, to estimate pu. By the CLT,
V(X — ) as a CDF close to that of ® (the CDF of a N(0,1) distribution)

[

IF' we don’t know o either, we can use S, to estimate o and Slutsky’s theorem. Let
H, = ‘é{—f(yn —p) = é‘f—n?(yn — ). Notice that §- 51> 0 since S, = 0. We also
know from CLT that ?(Yn — 1) L 7 ~ N(0,1). Thus, by Slutsky’s theorem, we know

D .
H, = X. This means we have

P (’X"S: “’ > 5> _ (X, — ] > Sug) ~ B(—v/nE) + (1 — D(y/ne))

6 Method of finding estimators

Definition. A point estimator is any function W (X, ..., X,) of a sample (X1,...,X,).

6.1 Method of moments

Consider (X7,...,X,) A for...0. where 6y,.... 6, are unknown. Let (n,...,m) be

.....

dummy variables of (0y,...,0;). For [ € N, define

0 ) = B (@) = [ o (@)

and

The method of moments estimator (0y, . ..,0;) of (61, ...,6;) is obtained by solving for

the (m1, ..., M) that solves
My =vi(n, .. mk)

My =vr(m, - Mk)

6.2 Maximum likelihood estimator

Definition. Let (X,..., X,,) i fo where § € D C RF with joint PDF Jo.xt,x0) (X150 Ty) =

,,,,,

[T, fo(z;). The likelihood of 6 given realized sample (xy,...,z,) is

n

LGz, ..., zn) =[] fo(z:)

i=1

Definition. Let f; be a PDF or PMF with § € D C R*. For (X;,...,X,) € R", let
9(X1, ..., X,) attain maxgep L(0|z1,...,x,) where (xq,...,2,) are fixed. The MLE of
parameter 6 based on random sample (Xq,...,X,) is é(Xl, ..., X,). IF D is not the

largest possible set where fy is well-defined, call é(X 15+, X,) the restricted MLE.
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o Alternatively, we can observe the behaviour of
k
log(L(elxb s 7xn)) = Z 10g(L<0|I’17 s 7xn)>
i=1

What if we want to estimate 7(6y) with MLE?
« We can define likelihood of n = 7(6)

— If 7 is injective, then define L™ (n|z1,...,2,) = L(77'(n)|x1, ..., 2p)

— If not, set L7(n|z1, ..., 2n) = SuPgg.r(g)=yy L(O|T1, ... T0)

Let 7(X;y,...,X,) attain max, L™(n|z1,...,x,). We say 7(X;,...,X,) is the MLE of
7(0).

Theorem. If (X1, ..., X,) attains maxgep L(6|z1, . . ., 2,), then for any 7(0), (X1, ..., X,) —

A~

T(0(X1,...,X,)) also attains max,c.(py L™(n|@1, ..., 2,).

7 Best unbiased estimators

Definition. An estimator W* is a best unbiased estimator of 7(f) where 7 : D — R if
W* satisfies

o Eo(W*)=7(0) for all € D

 For any other unbiased estimator of 7(6), W, we have Varg(W*) < Vary(W) for all
0 eD

W* is also called a uniform minimum variance unbiased estimator of 7(9).

Lemma (Holder’s Inequality). Let p, ¢ € (1,00) satisfy p~*+¢~! = 1. Let X,Y be R-r.v.
and not constant. Then, E(|XY|) < E(|X|P)?E(|Y|?)7.

Corollary (Cauchy-Schwarz). Let X, Y be R-r.v., not constant. Then,

E(|XY]) < \/IE(\X])QIE(\YP) Cov(X,Y)? < Var(X)Var(Y)
Equalities iff 3k > 0 s.t. | X| = k|Y|or Ik € Rs.t. X—E(X) = k(Y —E(Y)) respectively.

Theorem (Cramer-Rao Inequality). Let # € D C R and (Xy,...,X,) ~ gy that is C*
in 6 and each X; is X'-valued. Suppose W = W (Xy,...,X,,) is any estimator satisfying

d 0
@EQ(W) = /X" %(W(xl, ey ) g, ) d (T, Ty)
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and Varg(X) < oo. Then,

do

E <(§9 log(go (X, . .- vXn)))Q)

Varo1v) 5 OV K X))

Proof. Notice that

0 0
(89 log(ge(Xl,...,Xn))> = |20 log(ge(x1, ..., xn))d(T1, ..., %)
_ /Xn g0l w)d(n, . )
0
= @(1)
=0

So, we have
Cov alo((X X,) | =E 81((X X))
89 glgo\ A1, -5 An = 89 0glgo\ A1, .-, An
— BV g on(anX..., X))

—E (Wa log(go (X1, . .- ,Xn))>

06
0
= Wi(z1,...,xn) = log(ge(x1,. .., x0))g(x1, ..., xp)d(x1, ..., Ty)
xn 06
0
= Wiz, ..., xn)=go(x1, ..., 20)d(x1,. .. T,)
xn 00
d

@E@(W) by assumption

< \lVar(W)Var <(§9 log(ge(X1, ... ,Xn))> by Cauchy-Schwarz

But notice

2

Var (aaelog(gg(Xl,...,Xn))> E((aaelog(gg()(l,...,Xn))> —E(;elog(gg(Xl,...,Xn))>

E ((889 log(ge(X1, ... ,Xn))>2)

which completes the proof. |

Corollary (Cramer-Rao; iid case). Assume the (Xi,...,X,) from the assumptions of
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Cramer-Rao are iid. Then

Varg(W) >

s (& 1os(an(X))) )

Lemma. If f, satisfies LK, (% log(fg(Xl))) = [y L [(%bg(fg(x))) fg(l’)} dzx, then

E, ((;log<fe<xl>>) ) — o g a1

Corollary (Attainment). Let (Xi,...,X,) id fo where 6 € D C R and fy satisfies

assumptions of Cramer-Rao. Let L(0|z1,...,x,) = IIi-; fo(z;) be the likelihood of 6.
Let W = W(Xy,...,X,) be an unbiased estimator of 7(6). Then, W attains equality
in Cramer-Rao iff there exists a : D — [0, 00) such that a(0)(W(Xy,...,X,) —7(0)) =
Zlog(L(0|z, . .., xn)).

8 Sufficiency and unbiasedness

Definition. A family of PDFs/PMFs {fy : § € D C R?} of R-r.v. is an exponential
family if

fo(z) = h(z)c(f) exp (i wi(e)ti(x)>

for all & € D where h(z) > 0, t;(z) are real-valued functions, ¢(f) > 0 and w;(f) are

real-valued functions.

Definition. Let {fy : # € D} be an exponential family where D C R? is non-empty
iid n n

and open. Let (Xi,...,X,) ~ fo. Call T(xy,...,x,) = (ijl ti(xg), - 2 tk(xj)) a

complete sufficient statistic. T is also a complete sufficient statistics if there exists an

injective g such that T = g(T).

Theorem. Let (X1,...,X,) Y fowhered € D CRYand T = T(X4, ..., X,) a complete
sufficient statistic for a parameter 6 and ¢(7T') be any estimator based only on 7. Then

©(T) is the unique best unbiased estimator of Eq (o (7).

Definition. Let X be a R-r.v., Y be a Rer.v., n: R? — R. The conditional expectation
of n(Y') given X is a real-valued function of X that satisfies

E(h(X)n(Y)) = E(R(X)E(n(Y)|X))
for all bounded A : R" — R.

Properties:
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o E(an(Y) 4+ 0v(Z2)|X) = aE(n(Y)|X) + bE(y(Z2)|X) for all a,b € R
« E(n(X)[X) =n(X)
« E(EM(Y)]X)) = E(n(Y))

» Var(n(Y)) = Var(E(n(Y)| X)) + E(Var(n(Y)| X)) where Var(n(Y)|X) := E((n(Y) —
E(n(Y)|X))?|X) = E(n(Y)|X) - E(n(Y)]|X)

Theorem (Rao-Blackwell). Let W be any unbiased estimator of 7(¢) and 7" be a sufficient
statistic of 6. Let (1) = Eg(W|T). Then, Ey(¢(T")) = 7(0) and Vary(p(T)) < Varg(W)
for all . In other words, ¢(7') is a better unbiased estimator than W.

A way to find the BUE:

e Given (Xy,...,X,) Y fo where 0 € D C R where fj is from an exponential family

and D # () is open, T' = T(X4,...,X,,) is a complete sufficient statistic, and we

want to estimate 7(0) where 7: D — R

— Find H = H(Xy,...,X,) such that Eg(H) = 7(0) for all § € D so H is

unbiased

— Compute ¢o(T) = E¢(H|T), then ¢(T) is the BUE by a theorem above and
Rao-Blackwell

Theorem. If W is the BUE of 7(0) then W is unique.

Theorem. Let 7 : D — R and W be an unbiased estimator of 7(6). Then, W is the
BUE iff Covyg(W, V) =0 for all # and estimators V such that E¢(V') = 0.

9 Hypothesis testing

Definition. A hypothesis is a statement about a population parameter

Definition. 2 complementary hypotheses are called null hypothesis and alternative hy-

pothesis, denoted Hy or H; respectively.

The general format for a hypothesis test is Hy : 0 € Dy, H; : 0 € D§ where D, is a subset

of the parameter space, D.

Definition. A hypothesis testing procedure is a rate that specifies
1. For which sample values is Hy accepted
2. For which sample values is H; accepted (Hj is rejected)

The set of sample values for which H is rejected is called the rejection region and denoted
R.
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9.1 Typical construction of a test
1. Specify domain D, null and alternative hypotheses
2. Specify test statistic W = W (X, ..., X,,)

3. If possible, set up R based on W such that Pp((X7,...,X,) € R) is small for § € D,
but large for 6 € D

o This is so that if Hy is rejected, we're confident H; holds

9.2 Method of finding tests
Definition. The likelihood ratio test statistic for Hy: 0 € Dy C D vs H; : 0 € Df is

ANzy, ... x,) = SUPge Dy L)z, ..., zn)
) s bn SUDPgep L(@\xh’xn)

A likelihood ratio test (LRT) is any test with rejection region

R={(xy,...,2n) : My, ..., 2,) < ¢}

for some ¢ € [0, 1].

Definition. Let (Xi,...,X,) ~ fo. Suppose that [T, fo(z;) = go(T(z1, ..., zn))h(x1,. .., xp)
for some T', h that don’t depend on € and gy not on (z1,...,x,). Then T is called a suf-

ficient statistic.

Theorem (Theorem 8.2.4). Under the setting of the definition of sufficient statistic,
let A(xy...,x,) be a LRT. Then, IA* on the range of T such that A*(T(z,...,z,)) =
7\(.’171, ce ,Jln>.

Proof. By definition,

A(xl,...,xn) =

~PocDy oo, x”)), the rest of the claim follows. [ |
SUPgep 9(T(z1,..,7n))

Setting A*(x1,...,2,) =

9.3 Methods of evaluating tests

Definition. o Type I Error: incorrectly reject Hy but 6 € Dy, probability of Type I
Error is

Po((Xy,...,X,) € R)
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o Type II Error: incorrectly accept Hy but 6 € Df, probability of Type II Error is
Po((X1,...,X,) ¢ R)
Definition. The power function of a hypothesis test with rejection region R is
B(0) =Pe((Xy,...,X,) € R)
Probability of Type I Error: 5(6),60 € Dy

Probability of Type II Error: 1 — 3(6),60 € D§

Definition. For 0 < a < 1, a test with power function 3(0) is a size « test if supye p, 5(0) =

Q.

Definition. For 0 < a < 1, a test with power function £(6) is a level « test if
Supyep, B(0) < a.

9.3.1 Picking c in the likelihood ratio test

« Pick R by choosing ¢ such that 5(6) < «, a small
Suppose (X1,...,X,) S N(@,1),0 € R, Hy: 0 = 0y and H; : 0 # 0y. As per the LRT,
define the rejection region

C

R={(x1,...,2,) : |T — 6| > Tn

Then,

since X ~ N(6, %) Setting o = 2(1 — ®(c)), we get a size « test. Equivalently, we set
1

C = Za
2

Definition. A test with power function [(6) is unbiased if 5(¢') < 3(8") for any ¢’ € D,
and 0" € Df.

When designing a test,

1. Want a level a with small o so Type I Error is unlikely so we can be confident when

rejection occurs

'For ¢ € [0,1], define z, to a number such that for a random variable Z ~ N(0,1), P(Z > 2,) = ¢
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2. Want Type II Error as small as possible so that it’s easier to reject given H is true

Definition. A test is the uniformly most powerful level « test if 3(0) > [1(6) for all

0 € D§ and every (3, that is a power function of another level « test.

Theorem (Neyman Pearson). Let (Xi,...,X,) Y fo, 0 € {00,601}, Hy : 0 = 6y vs
Hy : 6 = 6,. Suppose there exists k£ > 0 such that

RD {(xl,...,ycn) : ﬁfal(l’i) > kﬁfeo(xi)}
and n n
R°D {(xl,...,xn) : l:Ilfel(%) < kl_[lfeo(xi>}

Additionally, suppose Py, ((X1,...,X,) € R) = « for some o € (0,1). Then, the test
with R is the UMP size a test.

Proof. WLOG, suppose fy is a PDF. Clearly, the test of of size «, thus it’s also a level
a test. Let f(0) = Po((Xy,...,X,) € R) be the power function. Let R’ be the rejection
region of another level a test, and 5'(0) = Py((Xy,...,X,) € R) be the corresponding

power function. Note that
(Tr(xy, ..., zn) — Lp(x1,...,2,)) (f[l fo, (x;) — k f[l fgo(xi)> >
since
Tg(zy,...,z,) =1 <= f[lfgl(xi) — k:f[lfgo(zi) >0
Tg(zy,...,x,) =0 <= ﬁfgl(xi) - kf[lfgo(xi) <0
by assumption. So,

0< | (Igr(xy,...,zn) — Lp(x1,...,20)) (12[1 Jo, (z;) — kﬁfe()(xi)> d(xy,...,2T,)

= B(01) — B'(01) — k(B(0o) — 5'(60))
< B(61) — B'(6h)

Corollary (8.3.13). Suppose the assumption of Neyman-Pearson. Let T'(Xj, ..., X,) be
a sufficient statistic and gy be the PDF/PMF of T'. Suppose 3k > 0 such that

RO {(z1,...,20) s 9o, (T(x1, ..., xn)) > kgoy(T(x1,...,2,))}

and
R D {(x1, ... xn) : go,(T(x1, ..., 20)) < kg (T(z1,...,2,))}
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Suppose additionally oo = Py, ((X71,...,X,) € R). Then, this test is a UMP level « test.

Proof. Recall from the definition of a sufficient statistic that

n

I fo.(z:) = go, (T (1, ..., zn)) (21, . .., 20)

i=1
Thus,

H fo,(zi) > k H foo (i) <= go,(x1,...,2,) > k Hggo(T(xl, cey )

i=1 i=1 i=1
and the same holds for <. By Neyman-Pearson, the rest follows. [ |

Theorem (Karlin-Rubin). Let (X3,...,X,) id fo,0 € R, Hy:0<0yvs H :0 >0y, T a
sufficient statistic of . Suppose {fy : § € D} has strict MLR. Then, for any t, > 0, the
test with R = {(x1,...,2,) : T(x1,...,2,) > to} is an UMP level « test.

Definition. Let (Xi,...,X,) Y fo, 0 € D C R. Suppose T is a sufficient statistic.
{fo : 6 € D} has strict monotone likelihood ratio if for all #" > 0,

9o (1)
go(t)

is increasing on {t € R : gy(¢) > 0 and gy (t) > 0}.

t—

10 Interval estimation

Definition. An interval estimate of a real-valued parameter 6 is any pair of func-
tions L(zy,...,x,) and H(xy,...,z,) satisfying L(xy,...,x,) < U(zy,...,z,) for all
(x1,...,2,). The interval [L(Xy,...,X,), H(X1,...,X,)] is an interval estimator. If

either L = —oo or H = oo, then it’s a one-sided estimator.

Definition. For an interval estimator [L(X7,...,X,), U(Xy,...,X,)] of a parameter 6,
the coverage probability is Py(L(Xy,...,X,) <0 <U(Xy,...,X,)).

Definition. The confidence coefficient is infgep Po(L( X1, ..., X,) <0 <U(Xy,...,X,)).
Definition. Call [L(X,...,X,),U(Xy,...,X,)] a (1 — a)-confidence interval estimate

if its confidence coefficient is 1 — a. Call a 2®-valued function C(xy,...,2,) a (1 — «a)-
confidence set estimate if infgep Pg(C(Xq,...,X,) 260) > 1 — a.

10.1 Inverting test statistic

Theorem. For each 6y € D, let A(fy) be the acceptance region of a level « test of
Hy : 0 =0y. For each (x1,...,x,), define

C(x1,...,7,) ={00 € D: (z1,...,2,) € A(b))}
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Then, C(xy,...,2,) isa (1—«a)-confidence set. Conversely, let C'(X7,...,X,,) bea (1—a)-
confidence set. For any 6y € D, define A(6y) = {(x1,...,2,) : Oy € C(X4,..., X))}
Then, A(6) is the acceptance region of a level « test of Hy : 6 = 6.

10.2 Pivotal quantities

Definition. A RV Q(X1, ..., X,,;0) is a pivotal quantity if the distribution of Q(Xy, ..., X,;0)

is independent of 6.
With a pivot Q(x1,...,2,;0), find —co < a < b < 0o such that
Poa<Q<b)=1-a,YQeD

By the test inversion theorem, C(z1,...,x,) = {6y € D : a < Q(x1,...,z,;0) < b} is a

(1 — a)-confidence set.

11 Asymptotic evaluations

11.1 Point estimators

Definition. A sequence of estimators W, = W, (Xi,...,X,) is a weakly consistent
sequence of estimators of a parameter 6; € R if for any ¢ > 0 and every 6; € D,
limn_,oo P91(|Wn — Qzl < 8) =1.

Theorem (10.1.3). Suppose (W,,)en satisfies lim,, o, Varg(W,,) = 0 and lim,,_,, Biasy(W,,) =
0 for every 0 € d. Then, (W,,),en is consistent.

Theorem. Let (W,,),en be consistent. Consider (a, )nen and (b, )pen such that lim,, o a,, =
1 and lim,, o0 b, = 0. Let U, = a,W,, + b,,. Then (U, )nen is also consistent.

Theorem. Let (X3,...,X,) % f, and L0z, ... 2n) = IT% fo(z:). Let @ be the MLE
of 6. Let 7(0) be R-valued continuous function of . Under suitable regularity conditions,

we have

A

T By(lr (e, . 2)) —7(0)] > 2) = 0
That is, (7(0,(X1, ..., X,)))nen is consistent of 7(6).

Definition. (W,,),en is asymptotically efficient for 7(8) if /n(W, — 7(8)) 2 N(0,v(8))

and )
(Z7(9)
By (2 log folz)))’

v(0) =

which is the C-R lower bound.
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Theorem. Let (X1,...,X,) = fy, 6 € D C R. Let 6 be the MLE of 6 and 7(6) be

continuous. Under suitable regularity conditions,
Va(r(8) = 7(6)) 2 N(0,v(6))

where v(#) is the C-R lower bound.
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