STA261

Ian Zhang

February 2023

1 Change of variable

1.1 Single variable

Let X be a \mathbb{R} -r.v. with PDF f_X and $\beta : \mathbb{R} \to \mathbb{R}$ be injective and strictly monotonic. Let $Z = \beta(X)$. Then

$$f_Z(z) = \begin{cases} f_X(\beta^{-1}(z))|(\beta^{-1}(z))'| & z \in \beta(\mathbb{R}) \\ 0 & \text{otherwise} \end{cases}$$

1.2 Multivariable

Let X be a \mathbb{R}^d -random vector with PDF $f_X : \mathbb{R}^d \to [0, \infty)$ and $\beta : \mathbb{R}^d \to \mathbb{R}^d$ be a function, and $Z = \beta(X)$ be a random vector. Let $(S_k)_{k \in N^0}$ partition \mathbb{R}^d (ie: $\bigcup_k S_k = \mathbb{R}^d$ and for all $i, j \in \mathbb{N}^0$, $i \neq j \implies S_i \cap S_j = \emptyset$). Suppose $\int_{S_0} dV = 0$ and for all $k \in \mathbb{N}$, S_k is open and $\beta_k := \beta|_{S_k}$ is injective and $D\beta_k(a)$ (Jacobian of β_k at a) is invertible for all $a \in S_k$ (β_k is a diffeomorphism). Then

$$f_Z(z) = \begin{cases} f_X(\beta^{-1}(z)) | \det D\beta^{-1}(z) | & z \in \beta(S_k), k \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

2 Statistical inference introduction

Definition. Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space.

- A random sample of size n is a set of r.v. (X_1, \ldots, X_n)
- An observed sample is a set of constants (x_1, \ldots, x_n)

Definition. A statistical model is a family of PDFs given by

$$\{f_{\theta}: \theta \in D\}$$

where D is the domain of θ .

Definition. $(X_i)_{i\in\mathbb{N}}$ are mutually independent if $\mathbb{P}(\bigcap_{i\in I} \{x_j \in A_n\}) = \prod_{i\in I} \mathbb{P}(x_i \in A_i)$ for any finite $I \subseteq \mathbb{N}$ and any $A_1, A_2, \ldots, \subseteq \mathbb{R}$.

Definition. If we write $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f$, where f is a PDF, we mean (X_1, \ldots, X_n) are mutually independent and X_i all have a PDF of f

3 Sums of random variables from a random sample

Definition. Let (X_1, \ldots, X_n) be a random sample.

- $\overline{X} := \frac{X_1 + \dots + X_n}{n}$ is the sample mean
- $S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is the sample variance
- $S := \sqrt{S^2}$ is the sample standard deviation

 \overline{X} , S^2 and S are all random variables and statistics.

Definition. Let (x_1, \ldots, x_n) be an observed sample.

- $\overline{x} := \frac{x_1 + \dots + x_n}{n}$ is the observed sample mean
- $s^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$ is the observed sample variance
- $s := \sqrt{s^2}$ is the observed sample standard deviation

Theorem. Let x_1, \ldots, x_n be an numbers and $\overline{x} = \frac{x_1 + \ldots + x_n}{n}$. Then

1.
$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

2.
$$(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2$$

Lemma. Suppose $(X_1,\ldots,X_n)\stackrel{\text{iid}}{\sim} f$. Let $g:\mathbb{R}\to\mathbb{R}$ be such that $\mathbb{E}|g(X_1)|<\infty$ and $\mathbb{E}|g(X_1)^2|<\infty$. Then

- $\mathbb{E}\left(\sum_{i=1}^{n} g(X_i)\right) = n\mathbb{E}(g(X_1))$
- $\operatorname{Var}\left(\sum_{i=1}^{n} g(X_i)\right) = n\operatorname{Var}(g(X_1))$

Theorem. Suppose $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f$ with $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}|X_1^2| < \infty$. let $\mathbb{E}(X_1) = \mu$ and $\text{Var}(X_1) = \sigma^2$. Then

1.
$$\mathbb{E}(\overline{X}) = \mu$$

2.
$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$$

3.
$$\mathbb{E}(S^2) = \sigma^2$$

Generalized Chebyshev's Inequality: If Y is a \mathbb{R} -r.v., then

$$\mathbb{P}(|Y| \ge \varepsilon) \le \frac{\mathbb{E}(|Y|^p)}{\varepsilon^p}, \forall \varepsilon > 0, p \in [1, \infty)$$

In particular, if p = 2, then we get the inequality from STA257.

Theorem (Distribution of Independent Sums). If X, Y are independent continuous random variables with respective densities f_X, f_Y , then the density of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(w) f_Y(z - w) dw$$

4 Sampling from the normal distribution

Definition. If a random variable Z has PDF $f_Z(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$ where $\mu \in \mathbb{R}$ and $\sigma > 0$, then we say $Z \sim N(\mu, \sigma^2)$.

Lemma. a) If $Z \sim N(\mu, \sigma^2)$, then $\mathbb{E}(Z) = \mu$ and $\text{Var}(Z) = \sigma^2$.

- b) Let $Z_1 \sim N(\mu_1, \sigma_1^2)$ and $Z_2 \sim N(\mu_2, \sigma_2^2)$. If $Z_1 \perp \!\!\! \perp Z_2$, then $aZ_1 + bZ_2 \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$
- c) Let $Z_i \sim N(\mu_1, \sigma^2)$ and (Z_1, \dots, Z_n) be mutually independent. Then, $\sum_{i=1}^n a_i Z_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$

Definition. Let $Z \sim N(0,1)$. Then, Z^2 has χ_1^2 distribution with 1-degree of freedom. Let $(Z_1, \ldots, Z_n) \stackrel{\text{iid}}{\sim} N(0,1)$. We say $\sum_{i=1}^n Z_i^2$ has χ_n^2 distribution.

The PDF of χ_n^2 is

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where

$$\Gamma(z) := \int_0^\infty r^{z-1} e^{-r} dr, z > 0 \qquad \Gamma(k) = (k-1)!$$

Notice that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, so the PDF of χ_1^2 is

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{x}} e^{-\frac{x}{2}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Lemma. Let (X_1, \ldots, X_n) be mutually independent. If $X_i \sim \chi^2_{P_i}$, then

$$\sum_{i=1}^{n} X_i \sim \chi^2_{P_1 + \dots + P_n}$$

Theorem. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. Then

- 1. $\overline{X} \perp \!\!\!\perp S^2$
- 2. $\overline{X} \sim N(\mu, \sigma^2/n)$
- 3. $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$

Note that b) is useful for error analysis when estimating μ with a known σ^2 .

$$\mathbb{P}(|\overline{X} - \mu| > \varepsilon) = \int_{-\infty}^{-\varepsilon} \frac{\sqrt{n}}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\frac{\sigma^2}{n}}\right) dx + \int_{\varepsilon}^{\infty} \frac{\sqrt{n}}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\frac{\sigma^2}{n}}\right) dx$$

c) is useful for finding the PDF of $\frac{S^2}{\sigma^2}$. If f is the PDF of χ^2_{n-1} , let $\beta(x) = \frac{1}{n-1}x$, thus $\beta' > 0$ and $\beta^{-1}(y) = (n-1)y \implies (\beta^{-1})' = n-1$. Then

$$f_{\frac{S^2}{\sigma^2}}(y) = f((n-1)x)(n-1) = \frac{n-1}{2^{n/2}\Gamma\left(\frac{n}{2}\right)}(n-1)^{\frac{n}{2}-1}x^{\frac{n}{2}-1}e^{-\frac{n-1}{2}x}$$

To perform actual estimations of μ and σ , we consider the random variable $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$. If μ is unknown but we know σ , then μ is the only unknown quantity and we can use this random variable to estimate μ (give confidence interval, etc.).

However, if we don't know σ , then we can use the random variable $S = \sqrt{S^2}$ to estimate σ and then perform error analysis (since $\mathbb{E}(S^2) = \sigma^2$). Thus, we have a random variable

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \tag{1}$$

Definition. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} N(0, 1)$. The random variable presented in (1) has Student's t-distribution with (n-1)-degrees of freedom.

A random variable T has Student's t-distribution with p degrees of freedom if T has PDF

$$f_T(t) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p\pi}} \frac{1}{\left(1 + \frac{t^2}{p}\right)^{\frac{p+1}{2}}} \longrightarrow T \sim t_p$$

Definition. Let (X_1, \ldots, X_n) be a random sample from a $N(\mu_X, \sigma_X^2)$ population and let (Y_1, \ldots, Y_m) be a random sample from a $N(\mu_Y, \sigma_Y^2)$ population. The random variable

$$F = \frac{S_X^2 / \sigma_X^2}{S_Y^2 / \sigma_Y^2}$$

has Snedcor's F-distribution with n-1 and m-1 degrees of freedom.

A random variable F has F-distribution with p and q degrees of freedom if F has PDF

$$f_F(x) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^{\frac{p}{2}} \frac{x^{\frac{p}{2}-1}}{\left(1 + \frac{p}{q}x\right)^{\frac{p+q}{2}}} \quad 0 < x < \infty$$

Let (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) be random samples as defined in the above definition.

We can compare relative variability (<u>ie</u>: $\frac{\sigma_X^2}{\sigma_Y^2}$) by observing $\frac{S_X^2}{S_Y^2}$. Notice the relation

$$\frac{S_X^2/S_Y^2}{\sigma_X^2 \sigma_Y^2} = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$$

From an above Theorem, we know that $\frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi_{n-1}^2$ and $\frac{(m-1)S_Y^2}{\sigma_Y^2} \sim \chi_{m-1}^2$. Additionally, the quantity presented has $F_{n-1,m-1}$ distribution by definition. Observing the expected value, we have

$$\mathbb{E}(F_{n-1,m-1}) = \mathbb{E}\left(\frac{\chi_{n-1}^2/(n-1)}{\chi_{m-1}^2/(m-1)}\right)$$

$$= \mathbb{E}\left(\frac{\chi_{n-1}^2}{n-1}\right) \mathbb{E}\left(\frac{m-1}{\chi_{m-1}^2}\right)$$
 independence
$$= \frac{n-1}{n-1} \frac{m-1}{m-3}$$

$$= \frac{m-1}{m-3}$$

5 Convergence

Definition. A sequence of \mathbb{R} -r.v.s $(Y_n)_{n\in\mathbb{N}}$ converges in probability to a random variable Y if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|Y_n - Y| \ge \varepsilon) = 0 \iff \lim_{n \to \infty} P(|Y_n - Y| < \varepsilon) = 1$$

If so, we write $Y_n \xrightarrow{\mathbb{P}} Y$.

5.1 Converges in probability

Theorem (Weak Law of Large Numbers). Let $(X_i)_{i\in\mathbb{N}}$ be an iid sequence of R-r.v.s with finite mean μ and finite variance $\sigma^2 < \infty$. Define $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. For every $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) = 1$$

That is, $\overline{X}_n \xrightarrow{\mathbb{P}} \mu$.

Proof. Fix $\varepsilon > 0$. By Chebyshev's Inequality, we have $\mathbb{P}(|\overline{X}_n - \mu| \ge \varepsilon) \le \frac{\mathbb{E}(|\overline{X}_n - \mu|^2)}{\varepsilon^2} = \frac{\operatorname{Var}(\overline{X}_n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}$. Taking $n \to \infty$, we have $\frac{\sigma^2}{n\varepsilon^2} \to 0$, thus $\overline{X}_n \xrightarrow{\mathbb{P}} \mu$ by definition.

Theorem. Suppose $(Y_n)_{n\in\mathbb{N}}$ converges in probability to Y. Let $h:\mathbb{R}\to\mathbb{R}$ be continuous. Then, the sequence of random variables $\{h(Y_n)\}_{n\in\mathbb{N}}$ converges in probability to h(Y).

5.2 Almost surely convergence

Definition. A sequence of \mathbb{R} random variables $(X_i)i \in \mathbb{N}$ converges almost surely to X if for all $\varepsilon > 0$,

$$\mathbb{P}(\lim_{n\to\infty} |X_n - X| < \varepsilon) = 1$$

If so, we say $X_n \xrightarrow{a.s.} X$.

Note that almost surely **implies** convergence in probability, but not vice versa.

Theorem. Let $(Y_n)_{n\in\mathbb{N}}$ be a sequence of random variables such that $Y_n \xrightarrow{a.s.} Y$. Let $h: \mathbb{R} \to \mathbb{R}$ be continuous. Then, the sequence $(h(Y_n))_{n\in\mathbb{N}}$ converges almost surely to h(Y).

Theorem (Strong Law of Large Numbers). Let $(X_i)_{i\in\mathbb{N}}$ be iid \mathbb{R} -r.v.s and X a \mathbb{R} -r.v. Suppose $\mathbb{E}|X_i|<\infty, \mathbb{E}|X_i^2|<\infty$ and $E(X_i)=\mu$ and $Var(X_i)=\sigma^2<\infty$. Define $\overline{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$. Then $\overline{X}_n\xrightarrow{a.s.}\mu$.

5.3 Convergence in distribution

Definition. A sequence of \mathbb{R} -r.v.s $(X_n)_{n\in\mathbb{N}}$ converges to a \mathbb{R} -r.v. X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all x at which F_X is continuous. If so, then $Y_n \xrightarrow{D} Y$.

Theorem. If $Y_n \xrightarrow{P} Y$, then $Y_n \xrightarrow{D} Y$.

A case where the converse is true is presented in the following theorem

Theorem. If $Y_n \xrightarrow{D} Y = c$, then $Y_n \xrightarrow{\mathbb{P}} Y$.

Theorem (Central Limit Theorem). Let $(X_i)_{i\in\mathbb{N}}$ be iid with $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}|X_1^2| < \infty$. Let $\mathbb{E}(X_i) = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $Y_n = \frac{\sqrt{n}}{\sigma} (\overline{X}_n - \mu)$. Then $Y_n \xrightarrow{D} Z \sim N(0, 1)$.

• Notice this theorem does not depend on the assumption that all X_i are N(0,1) distributed

Theorem (Slutsky's). Let $(Y_n)_{n\in\mathbb{N}}$ and $(Z_n)_n \in \mathbb{N}$ be sequences of random variables with $Y_n \xrightarrow{D} Y$ and $Z_n \xrightarrow{\mathbb{P}} c$ for some $c \in \mathbb{R}$. Then we have

- $Y_n + Z_n \xrightarrow{D} Y + c$
- $Z_n Y_n \xrightarrow{D} cY$

Additionally, if c > 0, then we have $\frac{Y_n}{Z_n} \xrightarrow{D} \frac{Y}{c}$.

Suppose $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f$. Suppose $\mathbb{E}(X_i) = \mu < \infty$ and $\text{Var}(X_i) = \sigma^2 < \infty$.

Suppose we know σ but not μ . Then we can use \overline{X}_n to estimate μ . By the CLT, $\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu)$ as a CDF close to that of Φ (the CDF of a N(0,1) distribution)

IF we don't know σ either, we can use S_n to estimate σ and Slutsky's theorem. Let $H_n := \frac{\sqrt{n}}{S_n}(\overline{X}_n - \mu) = \frac{\sigma}{S_n}\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu)$. Notice that $\frac{\sigma}{S_n} \stackrel{\mathbb{P}}{\to} 1 > 0$ since $S_n \stackrel{\mathbb{P}}{\to} \sigma$. We also know from CLT that $\frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) \stackrel{D}{\to} Z \sim N(0, 1)$. Thus, by Slutsky's theorem, we know $H_n \stackrel{D}{\to} X$. This means we have

$$\mathbb{P}\left(\left|\frac{X_n - \mu}{S_n}\right| > \varepsilon\right) = \mathbb{P}(|\overline{X}_n - \mu| > S_n \varepsilon) \approx \Phi(-\sqrt{n}\varepsilon) + (1 - \Phi(\sqrt{n}\varepsilon))$$

6 Method of finding estimators

Definition. A point estimator is any function $W(X_1, \ldots, X_n)$ of a sample (X_1, \ldots, X_n) .

6.1 Method of moments

Consider $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta_1, \ldots, \theta_k}$ where $\theta_1, \ldots, \theta_k$ are unknown. Let (η_1, \ldots, η_k) be dummy variables of $(\theta_1, \ldots, \theta_k)$. For $l \in \mathbb{N}$, define

$$v_l(\eta_1, \dots, \eta_k) := \mathbb{E}_{\eta_1, \dots, \eta_k}(x^l) = \int_{\mathbb{R}} x^l f_{v_1, \dots, v_k}(x) dx$$

and

$$M_l := \frac{1}{n} \sum_{i=1}^n x_i^l$$

The method of moments estimator $(\hat{\theta}_1, \dots, \hat{\theta}_k)$ of $(\theta_1, \dots, \theta_k)$ is obtained by solving for the (η_1, \dots, η_k) that solves

$$\begin{cases} M_1 = v_1(\eta_1, \dots, \eta_k) \\ \vdots \\ M_L = v_L(\eta_1, \dots, \eta_k) \end{cases}$$

6.2 Maximum likelihood estimator

Definition. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$ where $\theta \in D \subseteq \mathbb{R}^k$ with joint PDF $f_{\theta,(X_1,\ldots,X_n)}(x_1,\ldots,x_n) = \prod_{i=1}^n f_{\theta}(x_i)$. The likelihood of θ given realized sample (x_1,\ldots,x_n) is

$$L(\theta|x_1,\ldots,x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

Definition. Let f_{θ} be a PDF or PMF with $\theta \in D \subseteq \mathbb{R}^k$. For $(X_1, \ldots, X_n) \in \mathbb{R}^n$, let $\hat{\theta}(X_1, \ldots, X_n)$ attain $\max_{\theta \in D} L(\theta | x_1, \ldots, x_n)$ where (x_1, \ldots, x_n) are fixed. The MLE of parameter θ based on random sample (X_1, \ldots, X_n) is $\hat{\theta}(X_1, \ldots, X_n)$. IF D is not the largest possible set where f_{θ} is well-defined, call $\hat{\theta}(X_1, \ldots, X_n)$ the restricted MLE.

• Alternatively, we can observe the behaviour of

$$\log(L(\theta|x_1,\ldots,x_n)) = \sum_{i=1}^k \log(L(\theta|x_1,\ldots,x_n))$$

What if we want to estimate $\tau(\theta_0)$ with MLE?

- We can define likelihood of $\eta = \tau(\theta)$
 - If τ is injective, then define $L^{\tau}(\eta|x_1,\ldots,x_n)=L(\tau^{-1}(\eta)|x_1,\ldots,x_n)$
 - If not, set $L^{\tau}(\eta|x_1,\ldots,x_n) = \sup_{\{\theta:\tau(\theta)=\eta\}} L(\theta|x_1,\ldots,x_n)$

Let $\hat{\eta}(X_1,\ldots,X_n)$ attain $\max_{\eta} L^{\tau}(\eta|x_1,\ldots,x_n)$. We say $\hat{\eta}(X_1,\ldots,X_n)$ is the MLE of $\tau(\theta)$.

Theorem. If $\hat{\theta}(X_1, \dots, X_n)$ attains $\max_{\theta \in D} L(\theta | x_1, \dots, x_n)$, then for any $\tau(\theta), (X_1, \dots, X_n) \mapsto \tau(\hat{\theta}(X_1, \dots, X_n))$ also attains $\max_{\eta \in \tau(D)} L^{\tau}(\eta | x_1, \dots, x_n)$.

7 Best unbiased estimators

Definition. An estimator W^* is a best unbiased estimator of $\tau(\theta)$ where $\tau:D\to\mathbb{R}$ if W^* satisfies

- $\mathbb{E}_{\theta}(W^*) = \tau(\theta)$ for all $\theta \in D$
- For any other unbiased estimator of $\tau(\theta)$, W, we have $\operatorname{Var}_{\theta}(W^*) \leq \operatorname{Var}_{\theta}(W)$ for all $\theta \in D$

 W^* is also called a uniform minimum variance unbiased estimator of $\tau(\theta)$.

Lemma (Hölder's Inequality). Let $p, q \in (1, \infty)$ satisfy $p^{-1} + q^{-1} = 1$. Let X, Y be \mathbb{R} -r.v. and not constant. Then, $\mathbb{E}(|XY|) \leq \mathbb{E}(|X|^p)^{\frac{1}{p}} \mathbb{E}(|Y|^q)^{\frac{1}{q}}$.

Corollary (Cauchy-Schwarz). Let X, Y be \mathbb{R} -r.v., not constant. Then,

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(|X|)^2 \mathbb{E}(|Y|^2)}$$
 $\operatorname{Cov}(X, Y)^2 \le \operatorname{Var}(X) \operatorname{Var}(Y)$

Equalities iff $\exists k \geq 0$ s.t. |X| = k|Y| or $\exists k \in \mathbb{R}$ s.t. $X - \mathbb{E}(X) = k(Y - \mathbb{E}(Y))$ respectively.

Theorem (Cramer-Rao Inequality). Let $\theta \in D \subseteq \mathbb{R}$ and $(X_1, \ldots, X_n) \sim g_\theta$ that is C^∞ in θ and each X_i is \mathcal{X} -valued. Suppose $W = W(X_1, \ldots, X_n)$ is any estimator satisfying

$$\frac{d}{d\theta}E_{\theta}(W) = \int_{\mathcal{X}^n} \frac{\partial}{\partial \theta} (W(x_1, \dots, x_n) \cdot g_{\theta}(x_1, \dots, x_n)) d(x_1, \dots, x_n)$$

and $Var_{\theta}(X) < \infty$. Then,

$$\operatorname{Var}_{\theta}(W) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta}(W(X_1, \dots, X_n))\right)^2}{\mathbb{E}\left(\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_1, \dots, X_n))\right)^2\right)}$$

Proof. Notice that

$$\mathbb{E}\left(\frac{\partial}{\partial \theta}\log(g_{\theta}(X_{1},\ldots,X_{n}))\right) = \int_{\mathcal{X}^{n}} \frac{\partial}{\partial \theta}\log(g_{\theta}(x_{1},\ldots,x_{n}))d(x_{1},\ldots,x_{n})$$

$$= \int_{\mathcal{X}^{n}} \frac{\partial}{\partial \theta}g_{\theta}(x_{1},\ldots,x_{n})d(x_{1},\ldots,x_{n})$$

$$= \frac{\partial}{\partial \theta}(1)$$

$$= 0$$

So, we have

$$\operatorname{Cov}\left(W, \frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right) = \mathbb{E}\left(W \frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)$$

$$- \mathbb{E}(W)\mathbb{E}\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)$$

$$= \mathbb{E}\left(W \frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)$$

$$= \int_{\mathcal{X}^{n}} W(x_{1}, \dots, x_{n}) \frac{\partial}{\partial \theta} \log(g_{\theta}(x_{1}, \dots, x_{n}))g(x_{1}, \dots, x_{n})d(x_{1}, \dots, x_{n})$$

$$= \int_{\mathcal{X}^{n}} W(x_{1}, \dots, x_{n}) \frac{\partial}{\partial \theta} g_{\theta}(x_{1}, \dots, x_{n})d(x_{1}, \dots, x_{n})$$

$$= \frac{d}{d\theta} E_{\theta}(W) \qquad \text{by assumption}$$

$$\leq \sqrt{\operatorname{Var}(W)\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)} \qquad \text{by Cauchy-Schwarz}$$

But notice

$$\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right) = \mathbb{E}\left(\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)^{2}\right) - \mathbb{E}\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)^{2}\right)$$

$$= \mathbb{E}\left(\left(\frac{\partial}{\partial \theta} \log(g_{\theta}(X_{1}, \dots, X_{n}))\right)^{2}\right)$$

which completes the proof.

Corollary (Cramer-Rao; iid case). Assume the (X_1, \ldots, X_n) from the assumptions of

Cramer-Rao are iid. Then

$$\operatorname{Var}_{\theta}(W) \ge \frac{\left(\frac{d}{d\theta}\mathbb{E}_{\theta}(W)\right)^{2}}{n\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial\theta}\log(g_{\theta}(X_{1}))\right)^{2}\right)}$$

Lemma. If f_{θ} satisfies $\frac{d}{d\theta} \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \log(f_{\theta}(X_1)) \right) = \int_{\mathcal{X}} \frac{d}{d\theta} \left[\left(\frac{\partial}{\partial \theta} \log(f_{\theta}(x)) \right) f_{\theta}(x) \right] dx$, then

$$\mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log(f_{\theta}(X_1)) \right)^2 \right) = -\mathbb{E}_{\theta} \left(\frac{\partial^2}{\partial \theta^2} \log(f_{\theta}(X)) \right)$$

Corollary (Attainment). Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$ where $\theta \in D \subseteq \mathbb{R}$ and f_{θ} satisfies assumptions of Cramer-Rao. Let $L(\theta|x_1, \ldots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$ be the likelihood of θ . Let $W = W(X_1, \ldots, X_n)$ be an unbiased estimator of $\tau(\theta)$. Then, W attains equality in Cramer-Rao iff there exists $a: D \to [0, \infty)$ such that $a(\theta)(W(X_1, \ldots, X_n) - \tau(\theta)) = \frac{\partial}{\partial \theta} \log(L(\theta|x_1, \ldots, x_n))$.

8 Sufficiency and unbiasedness

Definition. A family of PDFs/PMFs $\{f_{\theta}: \theta \in D \subseteq \mathbb{R}^d\}$ of \mathbb{R} -r.v. is an exponential family if

$$f_{\theta}(x) = h(x)c(\theta) \exp\left(\sum_{i=1}^{n} w_{i}(\theta)t_{i}(x)\right)$$

for all $\theta \in D$ where $h(x) \geq 0$, $t_i(x)$ are real-valued functions, $c(\theta) \geq 0$ and $w_i(\theta)$ are real-valued functions.

Definition. Let $\{f_{\theta}: \theta \in D\}$ be an exponential family where $D \subseteq \mathbb{R}^d$ is non-empty and open. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$. Call $T(x_1, \ldots, x_n) = \left(\sum_{j=1}^n t_1(x_j), \ldots, \sum_{j=1}^n t_k(x_j)\right)$ a complete sufficient statistic. \tilde{T} is also a complete sufficient statistics if there exists an injective g such that $\tilde{T} = g(T)$.

Theorem. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$ where $\theta \in D \subseteq \mathbb{R}^d$ and $T = T(X_1, \ldots, X_n)$ a complete sufficient statistic for a parameter θ and $\varphi(T)$ be any estimator based only on T. Then $\varphi(T)$ is the unique best unbiased estimator of $\mathbb{E}_{\theta}(\varphi(T))$.

Definition. Let X be a \mathbb{R} -r.v., Y be a \mathbb{R}^d -r.v., $\eta: \mathbb{R}^d \to \mathbb{R}$. The conditional expectation of $\eta(Y)$ given X is a real-valued function of X that satisfies

$$\mathbb{E}(h(X)\eta(Y)) = \mathbb{E}(h(X)\mathbb{E}(\eta(Y)|X))$$

for all bounded $h: \mathbb{R}^n \to \mathbb{R}$.

Properties:

- $\mathbb{E}(a\eta(Y) + b\gamma(Z)|X) = a\mathbb{E}(\eta(Y)|X) + b\mathbb{E}(\gamma(Z)|X)$ for all $a, b \in \mathbb{R}$
- $\mathbb{E}(\eta(X)|X) = \eta(X)$
- $\mathbb{E}(E(\eta(Y)|X)) = E(\eta(Y))$
- $\operatorname{Var}(\eta(Y)) = \operatorname{Var}(\mathbb{E}(\eta(Y)|X)) + \mathbb{E}(\operatorname{Var}(\eta(Y)|X))$ where $\operatorname{Var}(\eta(Y)|X) := \mathbb{E}((\eta(Y) \mathbb{E}(\eta(Y)|X))^2|X) = \mathbb{E}(\eta(Y)|X) \mathbb{E}(\eta(Y)|X)^2$

Theorem (Rao-Blackwell). Let W be any unbiased estimator of $\tau(\theta)$ and T be a sufficient statistic of θ . Let $\varphi(T) = \mathbb{E}_{\theta}(W|T)$. Then, $\mathbb{E}_{\theta}(\varphi(T)) = \tau(\theta)$ and $\operatorname{Var}_{\theta}(\varphi(T)) \leq \operatorname{Var}_{\theta}(W)$ for all θ . In other words, $\varphi(T)$ is a better unbiased estimator than W.

A way to find the BUE:

- Given $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$ where $\theta \in D \subseteq \mathbb{R}$ where f_{θ} is from an exponential family and $D \neq \emptyset$ is open, $T = T(X_1, \ldots, X_n)$ is a complete sufficient statistic, and we want to estimate $\tau(\theta)$ where $\tau : D \to \mathbb{R}$
 - Find $H = H(X_1, ..., X_n)$ such that $\mathbb{E}_{\theta}(H) = \tau(\theta)$ for all $\theta \in D$ so H is unbiased
 - Compute $\varphi(T) = \mathbb{E}_{\theta}(H|T)$, then $\varphi(T)$ is the BUE by a theorem above and Rao-Blackwell

Theorem. If W is the BUE of $\tau(\theta)$ then W is unique.

Theorem. Let $\tau: D \to \mathbb{R}$ and W be an unbiased estimator of $\tau(\theta)$. Then, W is the BUE iff $Cov_{\theta}(W, V) = 0$ for all θ and estimators V such that $\mathbb{E}_{\theta}(V) = 0$.

9 Hypothesis testing

Definition. A hypothesis is a statement about a population parameter

Definition. 2 complementary hypotheses are called null hypothesis and alternative hypothesis, denoted H_0 or H_1 respectively.

The general format for a hypothesis test is $H_0: \theta \in D_0$, $H_1: \theta \in D_0^c$ where D_0 is a subset of the parameter space, D.

Definition. A hypothesis testing procedure is a rate that specifies

- 1. For which sample values is H_0 accepted
- 2. For which sample values is H_1 accepted (H_0 is rejected)

The set of sample values for which H_0 is rejected is called the rejection region and denoted R.

9.1 Typical construction of a test

- 1. Specify domain D, null and alternative hypotheses
- 2. Specify test statistic $W = W(X_1, \ldots, X_n)$
- 3. If possible, set up R based on W such that $\mathbb{P}_{\theta}((X_1,\ldots,X_n)\in R)$ is small for $\theta\in D_0$ but large for $\theta\in D_0^c$
 - This is so that if H_0 is rejected, we're confident H_1 holds

9.2 Method of finding tests

Definition. The likelihood ratio test statistic for $H_0: \theta \in D_0 \subseteq D$ vs $H_1: \theta \in D_0^c$ is

$$\lambda(x_1, \dots, x_n) = \frac{\sup_{\theta \in D_0} L(\theta | x_1, \dots, x_n)}{\sup_{\theta \in D} L(\theta | x_1, \dots, x_n)}$$

A likelihood ratio test (LRT) is any test with rejection region

$$R = \{(x_1, \dots, x_n) : \lambda(x_1, \dots, x_n) \le c\}$$

for some $c \in [0, 1]$.

Definition. Let $(X_1, \ldots, X_n) \sim f_{\theta}$. Suppose that $\prod_{i=1}^n f_{\theta}(x_i) = g_{\theta}(T(x_1, \ldots, x_n))h(x_1, \ldots, x_n)$ for some T, h that don't depend on θ and g_{θ} not on (x_1, \ldots, x_n) . Then T is called a sufficient statistic.

Theorem (Theorem 8.2.4). Under the setting of the definition of sufficient statistic, let $\lambda(x_1, \ldots, x_n)$ be a LRT. Then, $\exists \lambda^*$ on the range of T such that $\lambda^*(T(x_1, \ldots, x_n)) = \lambda(x_1, \ldots, x_n)$.

Proof. By definition,

$$\lambda(x_1, \dots, x_n) = \frac{\sup_{\theta \in D_0} L(\theta | x_1, \dots, x_n)}{\sup_{\theta \in D} L(\theta | x_1, \dots, x_n)}$$

$$= \frac{\sup_{\theta \in D_0} g(T(x_1, \dots, x_n)) h(x_1, \dots, x_n)}{\sup_{\theta \in D} g(T(x_1, \dots, x_n)) h(x_1, \dots, x_n)}$$

$$= \frac{\sup_{\theta \in D_0} g(T(x_1, \dots, x_n))}{\sup_{\theta \in D} g(T(x_1, \dots, x_n))}$$

Setting $\lambda^*(x_1,\ldots,x_n) = \frac{\sup_{\theta \in D_0} g(T(x_1,\ldots,x_n))}{\sup_{\theta \in D} g(T(x_1,\ldots,x_n))}$, the rest of the claim follows.

9.3 Methods of evaluating tests

Definition. • Type I Error: incorrectly reject H_0 but $\theta \in D_0$, probability of Type I Error is

$$\mathbb{P}_{\theta}((X_1,\ldots,X_n)\in R)$$

• Type II Error: incorrectly accept H_0 but $\theta \in D_0^c$, probability of Type II Error is

$$\mathbb{P}_{\theta}((X_1,\ldots,X_n)\notin R)$$

Definition. The power function of a hypothesis test with rejection region R is

$$\beta(\theta) = \mathbb{P}_{\theta}((X_1, \dots, X_n) \in R)$$

Probability of Type I Error: $\beta(\theta), \theta \in D_0$

Probability of Type II Error: $1 - \beta(\theta), \theta \in D_0^c$

Definition. For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a size α test if $\sup_{\theta \in D_0} \beta(\theta) = \alpha$.

Definition. For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if $\sup_{\theta \in D_0} \beta(\theta) \le \alpha$.

9.3.1 Picking c in the likelihood ratio test

• Pick R by choosing c such that $\beta(\theta) \leq \alpha$, α small

Suppose $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} N(\theta, 1)$, $\theta \in \mathbb{R}$, $H_0 : \theta = \theta_0$ and $H_1 : \theta \neq \theta_0$. As per the LRT, define the rejection region

$$R = \{(x_1, \dots, x_n) : |\overline{x} - \theta_0| \ge \frac{c}{\sqrt{n}}\}$$

Then,

$$\beta(\theta_0) = \mathbb{P}_{\theta_0} \left(|\overline{X} - \theta_0| \ge \frac{c}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\theta_0} \left(\overline{X} - \theta_0 \le -\frac{c}{\sqrt{n}} \right) + \mathbb{P}_{\theta_0} \left(\overline{X} - \theta_0 \ge \frac{c}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\theta_0} (\sqrt{n}(\overline{X} - \theta_0) \le -c) + \mathbb{P}_{\theta_0} (\sqrt{n}(\overline{X} - \theta_0) \ge c)$$

$$= 2(1 - \Phi(c))$$

since $\overline{X} \sim N(\theta, \frac{1}{n})$. Setting $\alpha = 2(1 - \Phi(c))$, we get a size α test. Equivalently, we set $c = z_{\frac{\alpha}{2}}^{-1}$.

Definition. A test with power function $\beta(\theta)$ is unbiased if $\beta(\theta') \leq \beta(\theta'')$ for any $\theta' \in D_0^c$ and $\theta'' \in D_0^c$.

When designing a test,

1. Want a level α with small α so Type I Error is unlikely so we can be confident when rejection occurs

¹For $q \in [0,1]$, define z_q to a number such that for a random variable $Z \sim N(0,1)$, $\mathbb{P}(Z > z_q) = q$

2. Want Type II Error as small as possible so that it's easier to reject given H_1 is true **Definition.** A test is the uniformly most powerful level α test if $\beta(\theta) \geq \beta_1(\theta)$ for all $\theta \in D_0^c$ and every β_1 that is a power function of another level α test.

Theorem (Neyman Pearson). Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$, $\theta \in \{\theta_0, \theta_1\}$, $H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose there exists k > 0 such that

$$R \supseteq \left\{ (x_1, \dots, x_n) : \prod_{i=1}^n f_{\theta_1}(x_i) > k \prod_{i=1}^n f_{\theta_0}(x_i) \right\}$$

and

$$R^c \supseteq \left\{ (x_1, \dots, x_n) : \prod_{i=1}^n f_{\theta_1}(x_i) < k \prod_{i=1}^n f_{\theta_0}(x_i) \right\}$$

Additionally, suppose $\mathbb{P}_{\theta_0}((X_1,\ldots,X_n)\in R)=\alpha$ for some $\alpha\in(0,1)$. Then, the test with R is the UMP size α test.

Proof. WLOG, suppose f_{θ} is a PDF. Clearly, the test of of size α , thus it's also a level α test. Let $\beta(\theta) = \mathbb{P}_{\theta}((X_1, \dots, X_n) \in R)$ be the power function. Let R' be the rejection region of another level α test, and $\beta'(\theta) = \mathbb{P}_{\theta}((X_1, \dots, X_n) \in R)$ be the corresponding power function. Note that

$$(\mathbb{1}_R(x_1,\ldots,x_n) - \mathbb{1}_{R'}(x_1,\ldots,x_n)) \left(\prod_{i=1}^n f_{\theta_1}(x_i) - k \prod_{i=1}^n f_{\theta_0}(x_i)\right) \ge$$

since

$$\mathbb{1}_{R}(x_{1}, \dots, x_{n}) = 1 \iff \prod_{i=1}^{n} f_{\theta_{1}}(x_{i}) - k \prod_{i=1}^{n} f_{\theta_{0}}(x_{i}) \ge 0$$

$$\mathbb{1}_{R}(x_{1}, \dots, x_{n}) = 0 \iff \prod_{i=1}^{n} f_{\theta_{1}}(x_{i}) - k \prod_{i=1}^{n} f_{\theta_{0}}(x_{i}) \le 0$$

by assumption. So,

$$0 \leq \int_{\mathbb{X}^n} (\mathbb{1}_R(x_1, \dots, x_n) - \mathbb{1}_{R'}(x_1, \dots, x_n)) \left(\prod_{i=1}^n f_{\theta_1}(x_i) - k \prod_{i=1}^n f_{\theta_0}(x_i) \right) d(x_1, \dots, x_n)$$

= $\beta(\theta_1) - \beta'(\theta_1) - k(\beta(\theta_0) - \beta'(\theta_0))$
 $\leq \beta(\theta_1) - \beta'(\theta_1)$

Corollary (8.3.13). Suppose the assumption of Neyman-Pearson. Let $T(X_1, \ldots, X_n)$ be a sufficient statistic and g_{θ} be the PDF/PMF of T. Suppose $\exists k > 0$ such that

$$R \supseteq \{(x_1, \dots, x_n) : g_{\theta_1}(T(x_1, \dots, x_n)) > kg_{\theta_0}(T(x_1, \dots, x_n))\}$$

and

$$R^c \supseteq \{(x_1, \dots, x_n) : g_{\theta_1}(T(x_1, \dots, x_n)) < kg_{\theta_0}(T(x_1, \dots, x_n))\}$$

Suppose additionally $\alpha = \mathbb{P}_{\theta_0}((X_1, \dots, X_n) \in R)$. Then, this test is a UMP level α test.

Proof. Recall from the definition of a sufficient statistic that

$$\prod_{i=1}^n f_{\theta_i}(x_i) = g_{\theta_i}(T(x_1, \dots, x_n))h(x_1, \dots, x_n)$$

Thus,

$$\prod_{i=1}^{n} f_{\theta_1}(x_i) > k \prod_{i=1}^{n} f_{\theta_0}(x_i) \iff g_{\theta_1}(x_1, \dots, x_n) > k \prod_{i=1}^{n} g_{\theta_0}(T(x_1, \dots, x_n))$$

and the same holds for <. By Neyman-Pearson, the rest follows.

Theorem (Karlin-Rubin). Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$, $\theta \in \mathbb{R}$, $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, T a sufficient statistic of θ . Suppose $\{f_{\theta} : \theta \in D\}$ has strict MLR. Then, for any $t_0 > 0$, the test with $R = \{(x_1, \ldots, x_n) : T(x_1, \ldots, x_n) > t_0\}$ is an UMP level α test.

Definition. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$, $\theta \in D \subseteq \mathbb{R}$. Suppose T is a sufficient statistic. $\{f_{\theta} : \theta \in D\}$ has strict monotone likelihood ratio if for all $\theta' > 0$,

$$t \mapsto \frac{g_{\theta'}(t)}{g_{\theta}(t)}$$

is increasing on $\{t \in \mathbb{R} : g_{\theta}(t) > 0 \text{ and } g_{\theta'}(t) > 0\}.$

10 Interval estimation

Definition. An interval estimate of a real-valued parameter θ is any pair of functions $L(x_1, \ldots, x_n)$ and $H(x_1, \ldots, x_n)$ satisfying $L(x_1, \ldots, x_n) \leq U(x_1, \ldots, x_n)$ for all (x_1, \ldots, x_n) . The interval $[L(X_1, \ldots, X_n), H(X_1, \ldots, X_n)]$ is an interval estimator. If either $L \equiv -\infty$ or $H \equiv \infty$, then it's a one-sided estimator.

Definition. For an interval estimator $[L(X_1, \ldots, X_n), U(X_1, \ldots, X_n)]$ of a parameter θ , the coverage probability is $\mathbb{P}_{\theta}(L(X_1, \ldots, X_n) \leq \theta \leq U(X_1, \ldots, X_n))$.

Definition. The confidence coefficient is $\inf_{\theta \in D} \mathbb{P}_{\theta}(L(X_1, \dots, X_n) \leq \theta \leq U(X_1, \dots, X_n)).$

Definition. Call $[L(X_1, \ldots, X_n), U(X_1, \ldots, X_n)]$ a $(1 - \alpha)$ -confidence interval estimate if its confidence coefficient is $1 - \alpha$. Call a $2^{\mathbb{R}}$ -valued function $C(x_1, \ldots, x_n)$ a $(1 - \alpha)$ -confidence set estimate if $\inf_{\theta \in D} \mathbb{P}_{\theta}(C(X_1, \ldots, X_n) \ni \theta) \geq 1 - \alpha$.

10.1 Inverting test statistic

Theorem. For each $\theta_0 \in D$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each (x_1, \dots, x_n) , define

$$C(x_1,...,x_n) = \{\theta_0 \in D : (x_1,...,x_n) \in A(\theta_0)\}$$

Then, $C(x_1, \ldots, x_n)$ is a $(1-\alpha)$ -confidence set. Conversely, let $C(X_1, \ldots, X_n)$ be a $(1-\alpha)$ -confidence set. For any $\theta_0 \in D$, define $A(\theta_0) = \{(x_1, \ldots, x_n) : \theta_0 \in C(X_1, \ldots, X_n)\}$. Then, $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$.

10.2 Pivotal quantities

Definition. A RV $Q(X_1, \ldots, X_n; \theta)$ is a pivotal quantity if the distribution of $Q(X_1, \ldots, X_n; \theta)$ is independent of θ .

With a pivot $Q(x_1, \ldots, x_n; \theta)$, find $-\infty \le a \le b \le \infty$ such that

$$\mathbb{P}_{\theta}(a \le Q \le b) = 1 - \alpha, \forall Q \in D$$

By the test inversion theorem, $C(x_1, \ldots, x_n) = \{\theta_0 \in D : a \leq Q(x_1, \ldots, x_n; \theta) \leq b\}$ is a $(1 - \alpha)$ -confidence set.

11 Asymptotic evaluations

11.1 Point estimators

Definition. A sequence of estimators $W_n = W_n(X_1, ..., X_n)$ is a weakly consistent sequence of estimators of a parameter $\theta_i \in \mathbb{R}$ if for any $\varepsilon > 0$ and every $\theta_i \in D$, $\lim_{n\to\infty} \mathbb{P}_{\theta_i}(|W_n - \theta_i| < \varepsilon) = 1$.

Theorem (10.1.3). Suppose $(W_n)_{n\in\mathbb{N}}$ satisfies $\lim_{n\to\infty} \operatorname{Var}_{\theta}(W_n) = 0$ and $\lim_{n\to\infty} \operatorname{Bias}_{\theta}(W_n) = 0$ for every $\theta \in d$. Then, $(W_n)_{n\in\mathbb{N}}$ is consistent.

Theorem. Let $(W_n)_{n\in\mathbb{N}}$ be consistent. Consider $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} a_n = 1$ and $\lim_{n\to\infty} b_n = 0$. Let $U_n = a_n W_n + b_n$. Then $(U_n)_{n\in\mathbb{N}}$ is also consistent.

Theorem. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$ and $L(\theta|x_1, \ldots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$. Let $\hat{\theta}$ be the MLE of θ . Let $\tau(\theta)$ be \mathbb{R} -valued continuous function of θ . Under suitable regularity conditions, we have

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(|\tau(\hat{\theta}(x_1, \dots, x_n)) - \tau(\theta)| \ge \varepsilon) = 0$$

That is, $(\tau(\hat{\theta}_n(X_1,\ldots,X_n)))_{n\in\mathbb{N}}$ is consistent of $\tau(\theta)$.

Definition. $(W_n)_{n\in\mathbb{N}}$ is asymptotically efficient for $\tau(\theta)$ if $\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{D} N(0, v(\theta))$ and

$$v(\theta) = \frac{\left(\frac{\partial}{\partial \theta} \tau(\theta)\right)^2}{\mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x)\right)\right)^2}$$

which is the C-R lower bound.

Theorem. Let $(X_1, \ldots, X_n) \stackrel{\text{iid}}{\sim} f_{\theta}$, $\theta \in D \subseteq \mathbb{R}$. Let $\hat{\theta}$ be the MLE of θ and $\tau(\theta)$ be continuous. Under suitable regularity conditions,

$$\sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \xrightarrow{D} N(0, v(\theta))$$

where $v(\theta)$ is the C-R lower bound.