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1 The Real Numbers

1.1 Preliminaries

Theorem. For a, b ∈ R, a and b are equal iff ∀ε > 0, |a − b| < ε.

1.2 Axiom of Completeness

1.2.1 Initial definition of R

• Q ⊆ R

• R is a field, so commutativity, associativity and distributivity will hold

Axiom of Completeness: Every non-empty set of real numbers that is bounded above
has a supremum.

1.2.2 Lowest Upper Bound and Greatest Lower Bound

Definition. A set A ⊆ R is bounded above if there exists some b ∈ R such that for all
a ∈ A, a ≤ b. b is an upper bound of A.
A set A ⊆ R is bounded below if there exists some b ∈ R such that for all a ∈ A, a ≥ b.
b is an lower bound of A.

Definition. A number s ∈ R is the supremum of a set A ⊆ R if

1. s is an upper bound of A

2. If b is an upper bound of A, s ≤ b

If so, s = sup(A)

• inf(A) is defined similarly

• sup and inf are unique

Lemma. Assume y ∈ R is an upper bound of X ⊆ R. Then, y = sup(X) iff for all ε > 0,
there exists some x ∈ X such that y − ε < x.

1.3 Consequences of Completeness

Theorem (Nested Interval Property). For each n ≥ 1, let In = [an, bn] be a closed
interval such that In+1 ⊆ In. Then

⋂
n≥1

In ̸= ∅
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1.3.1 Density of Q in R

Archimedean property

1. Given any x ∈ R, there exists n ∈ N such that n > x

2. Given any y > 0, there exists n ∈ N such that 1
n

< y

Definition. A set D ⊆ R is dense in R if for any two x, y ∈ R such that x < y, there
exists some d ∈ D such that

x < d < y

Theorem (Density of Q in R). Q is dense in R.

• R \ Q is also dense in R

1.4 Cardinality

Definition. A set X is countable if there exists a bijection f : N → X.

Theorem. The following are true:

1. Z is countable

2. Q is countable

3. The product of finitely many countable sets is countable.

Theorem. R is uncountable.

Theorem. If A ⊆ B and B is countable, then A is countable, empty, or finite.

Definition. The power set P(X) is the set consisting of all subsets of X.

Lemma. For every set X, there exists a bijection from P(X) onto {0, 1}X .

Theorem (Cantor’s Theorem I). P(N) is uncountable.

Theorem (Cantor’s Theorem II). For every X, there is no surjection from X onto P(X).

2 Sequences and Series

2.1 Sequences and their limits

Definition. A sequence is a function f : N → R.

Definition. A sequence (xn)n∈N converges to x ∈ R if for all ε > 0, there exists some
N ∈ N such that if n ≥ N , |x − xn| < ε.
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Definition. Given x ∈ R and ε > 0, the set Vε(x) = {y ∈ R : |x − y| < ε} is the
ε-neighbourhood around x.

Definition. A sequence (xn)n∈N converges to x ∈ R if given any Vε(x), there exists some
N ∈ N such that xn ∈ Vε(x) whenever N ∈ N.

Definition. A sequence that doesn’t converge diverges.

Proposition. If a sequence (xn)n∈N converges, then so does (|xn|)n∈N.

Proposition. Let (xn)n∈N be a bounded sequence and (yn)n∈N be a sequence with the
following property: there exists some R > 0 and N ∈ N such that such that for all n ≥ N ,
|xn − yn| < R. Then (yn)n∈N is also bounded.

2.2 Limits, Order and Algebraic Operations

Definition. A sequence (xn)n∈N is bounded if there exists some M > 0 such that |xn| ≤
M for all n ∈ N.

Theorem. Every convergent sequences is bounded.

Algebraic Limit Theorem
Let lim an = a and lim bn = b. Then,

1. lim(can) = ca for all c ∈ R

2. lim(an + bn) = a + b

3. lim(anbn) = ab

4. lim
(

an

bn

)
= a

b
provided b ̸= 0

Order Limit Theorem
Assume lim an = a and lim bn = b. Then

1. If an ≥ 0 for all n ∈ N, then a ≥ 0

2. If an ≤ bn for all n ∈ N, then a ≤ b

3. If there exists some c ∈ R such that c ≤ bn or an ≤ c then c ≤ b or a ≤ c

2.3 Monotone Convergence Theorem

Definition. A sequence (an)n∈N is increasing if an ≤ an+1 for all n ∈ N and decreasing
if an ≥ an+1 for all n ∈ N. A sequence is monotone if either increasing or decreasing.

Monotone Convergence Theorem
If a sequence is bounded or monotonic, then it converges.
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2.4 Bolzano-Weierstrass Theorem

Definition. Let (xn)n∈N be a sequence of real numbers and let n1 < n2 < . . . be an
increasing sequence of natural numbers. Then (xn1 , xn2 , . . .) is a subsequence of (xn)n∈N

and denoted (xnk
)k∈N.

Proposition. Subsequences of convergent sequences converge to the same limit as the
original.

Bolzano-Weierstrass Theorem
Every bounded sequence has a convergent subsequence.

2.5 Cauchy Sequences

Definition. A sequence (xn)n∈N is Cauchy if for every ε > 0, there exists some N ∈ N
such that whenever n, m ≥ N , |xn − xm| < ε.

Theorem (Cauchy Criterion). A sequence is convergent if, and only if, it is Cauchy.

2.6 Infinite Series

Definition. Let (xn)n∈N be a sequence. An infinite series is an expression of the form
∑
n∈N

xn := x1 + . . . + xn + . . .

The sequence of partial sums (sn)n∈N is given by

sn :=
∑
i≤n

xi = x1 + x2 + . . . + xn

A series converges to s if its sequence of partial sums does, i.e.: sn → s. If so, we say
∑
n∈N

xn = s

Theorem (Cauchy Condensation Test). Suppose (xn)n∈N is decreasing and satisfies xn ≥
0 for all n ∈ N. Then ∑

n∈N
xn converges iff

∑
n∈N

2nx2n does

Theorem. If
∑
n∈N

xn = s and
∑
n∈N

yn = t, then

1. For all k ∈ R,
∑
n∈N

kxn = ks

2.
∑
n∈N

(xn + yn) = s + t
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Corollary. If
∑
n∈N

xn converges, then xn → 0.

Corollary (Comparison Test). Let (xn)n∈N and (yn)n∈N be sequences such that 0 ≤ xn ≤
yn for all n ∈ N. Then

1. If
∑
n∈N

yn converges, then so does
∑
n∈N

xn

2. If
∑
n∈N

xn diverges, then so does
∑
n∈N

yn

Theorem (Cauchy Criterion for Series). The series
∑
n∈N

an converges iff given ε > 0, there

exists some N ∈ N such that whenever n > m ≥ N ,

|am+1 + . . . + an| < ε

3 Topology

3.1 Open and Closed Sets

3.1.1 Open Sets

Definition. A subset U ⊆ R is open if for all x ∈ U , there exists some ε > 0 such that
Vε(x) ⊆ U .

Examples:

• R

• ∅

• Any open interval (a, b), a, b ∈ R

Proposition. The following hold for open sets:

• Arbitrary unions of open sets are open

• Finite intersections of open sets are open

3.1.2 Closed Sets

Definition. A point x is a limit point of a set X if every neighbourhood of x intersects
the set X at some point other than x. Equivalently, x is a limit point of X if

(Vε(x) \ {x}) ∩ X ̸= ∅

for every ε > 0.
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Theorem. x is a limit point of A if, and only it, x = lim an for some sequence (an)n∈N ⊆ A

satisfying an ̸= x for all x ∈ N.

Definition. A point a ∈ A is an isolated point of A if a is not a limit point of A.

Definition. A set F ⊆ R is closed if it contains all its limit points.

Example:

• Convergent sequences

• Closed intervals

Theorem. A set A ⊆ R is closed if, and only if, every Cauchy sequence contained in A

has a limit that is also an element of A.

Proof. Suppose A is closed and let (an)n∈N be a Cauchy sequence contained A. By the
Cauchy criterion, (an) converges to some limit a. If an ̸= a for all n ∈ N, then a is a limit
point of A by definition, so a ∈ A. If for some n an = a, then since (an) is contained in
A, a ∈ A.
Suppose then that every Cauchy sequence contained in A has a limit also contained in
A. Let x be a limit point of A. By definition, there exists some sequence (an)n∈N ⊆ A

such that an ̸= x for all n and an → x. Since this sequence is convergent, then it is also
Cauchy. By assumption, this shows x ∈ A, thus A is closed. ■

Definition. The closure X̄ of a set X is defined as X together with its limit points.

Theorem. The closure X̄ of X is the minimal closed set including X.

Proposition. A subset of R is open if, and only it, its complement is closed.

Corollary. The following hold for closed sets:

• Arbitrary intersections of closed sets are closed

• Finite unions of closed sets are closed.

Proof. By DeMorgan’s. ■

3.2 Compactness

Definition. A subset A ⊆ R is compact if every sequence in A has a subsequence that
converges to some point in A.

Example

• Closed intervals

Heine-Borel Theorem
A subset K of R is compact if, and only if, it’s closed and bounded.

Proposition. The nested intersection of non-empty compact sets is non-empty.
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3.2.1 Open Covers

Definition. An open cover of a subset X ⊆ R is a collection of open sets {Oi : i ∈ I}
whose union includes X, i.e.:

X ⊆
⋃
i∈I

Oi

Given an open cover of X, a finite subcover is a finite subcollection of open sets form the
original open cover whose union still covers X.

Theorem. Let K ⊆ R. The following are equivalent:

1. K is compact

2. K is closed and bounded

3. Every open cover of K has a finite subcover

3.2.2 Perfect Sets

Definition. A subset P ⊆ R is perfect if its closed with no isolated points.

Theorem. A non-empty perfect set is uncountable.

3.3 Connected Sets

Definition. Two sets X, Y ⊆ R are separated if X̄ ∩ Y = X ∩ Ȳ = ∅.
A set Z ⊆ R is disconnected if Z = X ∪ Y where X and Y are separated sets.
A set that is not disconnected is connected.

Examples:

• Disjoint open intervals (0, 1) and (2, 3)

• Q is disconnected

Theorem. A set Z ⊆ R is connected if, and only if, for all non-empty disjoint sets X

and Y satisftying Z = X ∪ Y , there exists a convergent sequence xn → x such that if
(xn)n∈N ⊆ X, then x ∈ Y .

Theorem. A subset Z ⊆ R is connected if, and only if, it’s an interval.

Baire Category Theorem
The intersection of countably many dense open subsets of R is dense.

Definition. A set is Fσ if it can be written as a countable union of closed sets. A set is
Gδ if it can be written as a countable intersection of open sets.
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3.4 Cantor Set

Let C0 = [0, 1] and define

C1 := C0 \
(1

3 ,
2
3

)
=
[
0,

1
3

]
∪
[2
3 , 1

]
C2 :=

([
0,

1
9

]
∪
[2
9 ,

1
3

])
∪
([2

3 ,
7
9

]
∪
[8
9 , 1

])
and so on, so each Cn is constructed by removing the middle 1

3 of each component of
Cn−1 for all n ∈ N. As such, each Cn is equal to 2n closed intervals of length 1

3n .
Define the Cantor set as

C =
⋂

n∈N
Cn

For all n ∈ N, 0, 1 ∈ Cn, so 0, 1 ∈ C.

• If y is an endpoint of one of the intervals of Cn, then y is also an endpoint of an
interval of Cn+1, so y ∈ Cn for all n

– C contains at least the endpoints of all components of all Cn

Additionally, C has 0 length and is uncountable (i.e.: |C| = |R|).

Proposition. C is compact.

Proof. Since C ⊆ [0, 1], C is bounded. Since Cn is a finite intersection of closed sets, each
Cn is closed, so since C is the arbitrary intersection of closed sets, then C itself must be
closed. By Heine-Borel, C is compact. ■

4 Functional Limits and Continuity

4.1 Functional Limits

Definition. Let f : R → R and c ∈ R. We say

lim
x→c

f(x) = L

if for all ε > 0, there exists some δ > 0 such that whenever 0 < |x−c| < δ, |f(x)−L| < ε.

Proposition. Given f : R → R and c ∈ R, the following are equivalent:

1. lim
x→c

f(x) = L

2. For every (xn)n∈N with xn ̸= c for all n and xn → c, f(xn) → L

Corollary. Let f, g : R → R and c ∈ R. Assume

lim
x→c

f(x) = L lim
x→c

g(x) = M
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Then,

1. lim
x→c

(f + g)(x) = L + M

2. lim
x→c

(fg)(x) = LM

3. If M ̸= 0, then lim
x→c

(
f

g

)
(x) = L

M

4.2 Continuity

Definition. A function f : R → R is continuous at a ∈ R if for all ε > 0, there exists
δ > 0 such that |x − a| < δ implies |f(x) − f(a)| < ε.
A function is continuous on a set X ⊆ R if the function is continuous at every a ∈ X.

Proposition. For every f : R → R and a ∈ R, the following are equivalent:

1. f is continuous at a

2. lim
x→a

f(x) = f(a)

3. If xn → a, then f(xn) → f(a)

Theorem. Let f, g : R → R be continuous at a ∈ R. Then

1. f + g is continuous at a

2. fg is continuous at a

3. If g(a) ̸= 0, then f
g

is continuous at a

Theorem. Given f : A → R, g : B → R and assuming f(A) ⊆ B, if f is continuous at
a ∈ A, g ∈ f(a) ∈ B, then g ◦ f is continuous at a.

4.2.1 Continuity on Compact Sets

Theorem. The continuous image of a compact set is compact.

Extreme Value Theorem
If f : K → R is continuous on a compact K ⊆ R, then f attains both a maximum and
minimum value.

Proof. Since f is continuous, then f(K) is compact, thus closed and bounded by Heine-
Borel. By Axiom of Completeness, sup(f(K)) and inf(f(K)) exist, and since f(K) is
closed, sup(f(K)), inf(f(K)) ∈ f(K), thus max(f(K)) and min(f(K)) exist, as required.

■
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4.2.2 Uniform Continuity

Definition. A function f : R → R is uniformly continuous on X ⊆ R if for all ε > 0,
there exists some δ > 0 such that for all x, y ∈ X, |x − y| < δ implies |f(x) − f(y)| < ε.

• By order of quantifiers, δ can ONLY depend on ε for uniformly continuous and
must be preset to work for any x, y ∈ R

Theorem. A function that is continuous on a compact set K is uniformly continuous on
K.

Theorem. A function f : A → R fails to be uniformly continuous on A if there exists
ε > 0 and 2 sequences (xn)n∈N and (yn)n∈N in A satisfying

|xn − yn| → 0 but |f(xn) − f(yn)| ≥ ε

4.3 Intermediate Value Theorem

Intermediate Value Theorem
If f : [a, b] → R is continuous and L is a number between f(a) and f(b), then there exists
some c ∈ (a, b) such that L = f(c).

Theorem. Let f : A → R be continuous. If E ⊆ A is connected, then so is f(E).

5 The Derivative

5.1 Definition of Derivative

Definition. Let f : R → R and c ∈ R. The derivative of f at c is defined as

f ′(c) := lim
x→c

f(x) − f(c)
x − c

= lim
h→0

f(c + h) − f(c)
h

If f ′(c) exists for all c ∈ X, then f is differentiable on X.

Proposition. Differentiable functions are continuous.

Proof. Let f be differentiable on a set X. Let c ∈ X. Since f is differentiable at c, then

f ′(c) = lim
x→c

f(x) − f(c)
x − c

By the Algebraic Limit Theorem

lim
x→c

(f(x) − f(c)) = lim
x→c

f(x) − f(c)
x − c

(x − c) = f ′(c)(0) = 0

since this limit exists. This implies limx→c f(x) = f(c), thus f is continuous at c. ■
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Theorem. Let f, g : R → R be differentiable functions at a point c ∈ R. Then

1. (f + g)′(c) = (f ′ + g′)(c)

2. (kf)′(c) = kf ′(c)

3. (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

4. Provided g(c) ̸= 0,
(

f
g

)′
(c) = f ′(c)g(c)−f(c)g′(c)

g2(c)

Theorem (Chain Rule). Let f : A → R and g : B → R be differentiable functions such
that range(f) ⊆ B. Then

(g ◦ f)′(c) = g′(f(c)) · f ′(c)

5.1.1 Darboux’s Theorem

Theorem (Interior Extreme Value). Let f : R → R be differentiable on (a, b). If c ∈ (a, b)
is an extremum of f , then f ′(c) = 0.

Theorem (Darboux). If f : R → R is differentiable on [a, b] and z ∈ R is between f ′(a)
and f ′(b), then there exists c ∈ (a, b) such that f ′(c) = z.

5.2 Mean Value Theorem

Theorem (Rolle). Let f : R → R be a function continuous on [a, b] and differentiable
on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Mean Value Theorem
If f : [a, b] → R is continuous and differentiable on (a, b), then there exists c ∈ (a, b) such
that

f ′(c) = f(b) − f(a)
b − a

Proof. Define a function h(x) = f(x)
(

f(b)−f(a)
b−a

(x − a) + f(a)
)
, so h′ exists and h is con-

tinuous on [a, b]. Since h(b) = h(a), then by Rolle’s Theorem, there exists some c ∈ (a, b)
such that h′(c) = 0, so

0 = f ′(c) − f(b) − f(a)
b − a

as required. ■

Corollary. If g : A → R is differentiable on an interval A and g′(A) = {0}, then g(x) = k

for some k ∈ R.

Corollary. If f, g are differentiable on an interval A and satisfy f ′ = g′, then f(x) =
g(x) + k for some k ∈ R.

Page 13



MAT337 Notes
Ian Zhang

1008367955

Theorem (Generalized Mean Value). If f, g : R → R are continuous on [a, b] and differ-
entiable on (a, b), then there exists some c ∈ (a, b) such that

(f(b) − f(a))g′(c) = f ′(c)(g(b) − g(a))

6 Sequences and Series of Functions

6.1 Uniform Convergence of a Sequence of Functions

6.1.1 Pointwise Convergence

Definition. For each n ∈ N, let fn : A → R be a function for some A ⊆ R. The sequence
of functions (fn)n∈N converges pointwise on A to f : A → R if for all x ∈ A, (fn(x))n∈N

converges to x. Equivalently, (fn)n∈N converges pointwise to f if

∀x ∈ A, ∀ε > 0, ∃N ∈ N s.t. |fn(x) − f(x)| < ε whenever n ≥ N

• Notice that with this order of quantifiers, the choice of N can depend on ε and a
fixed x ∈ A

6.1.2 Uniform Convergence

Definition. A sequence of functions (fn)n∈N converges uniformly on a set A to a function
f if for all ε > 0, there exists N ∈ N such that |fn(x) − f(x)| < ε whenever n ≥ N and
x ∈ A. Equivalently, (fn)n∈N converges uniformly to f if

∀ε > 0, ∃N ∈ N s.t. ∀x ∈ A, |fn(x) − f(x)| < ε whenever n ≥ N

• Notice that with this order of quantifiers, the choice of N can only depend on ε and
must be preset to work for any choice of x, unlike in pointwise convergence where
N can be modified to work for any x ∈ A

Cauchy Criterion for Uniform Convergence
A sequence of functions (fn)n∈N defined on a set A ⊆ R converges uniformly on A if, and
only if, for all ε > 0, there exists some N ∈ N such that for all x ∈ A, |fm(x) − fn(x)| < ε

whenever m, n ≥ N .

Theorem. The uniform limit of continuous functions is itself continuous. In other words,
if (fn)n∈N converges uniformly on A to f and all fn are continuous, then f is itself
continuous.
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6.2 Uniform Convergence and Differentiation

Theorem. If fn → f pointwise on [a, b], each fn is differentiable and f ′
n → g uniformly

on [a, b], then f is differentiable with f ′ = g.

• Basically, if (fn)n∈N converges pointwise on [a, b], (f ′
n)n∈N converges uniformly on

[a, b], then the limit of (fn)n∈N is itself differentiable and its derivative is the limit
of (f ′

n)n∈N

Theorem. Let (fn)n∈N be a sequence of differentiable functions defined on closed interval
[a, b] and assume (f ′

n)n∈N converges uniformly on [a, b]. If there exists some point x0 ∈
[a, b] such that (fn(x0))n∈N is convergent, then (fn)n∈N converges uniformly on [a, b].

6.3 Series of Functions

Definition. For each n ∈ N, let fn and f be functions. The infinite series
∑
n∈N

fn

converges pointwise to f if the sequence of partial sums (sk)k∈N, defined by

sk :=
∑
n≤k

fn

converges pointwise to f .
If (sk)k∈N converges uniformly to f on a set X, then

∑
n∈N

fn converges uniformly to f on

X.

Theorem. If (fn)n∈N is a sequence of continuous functions and
∑
n∈N

fn converges uniformly

on X ⊆ R, then it is continuous.

Theorem. Let (fn)n∈N be a sequence of differentiable functions on an interval [a, b], and
assume

g :=
∑
n∈N

f ′
n

converges uniformly. If there exists some x ∈ [a, b] such that
∑
n∈N

fn(x) converges, then∑
n∈N fn converges uniformly to a differentiable function with derivative g on [a, b]. Equiv-

alently, ∑
n∈N

fn

′

=
∑
n∈N

f ′
n

Theorem (Weierstrass M -Test). Let (fn)n∈N be a sequence of differentiable functions on
a set X ⊆ R and assume there are positive real numbers (Mn)n∈N such that for all n ∈ N,

sup
x∈X

|f ′
n(x)| < Mn
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If
∑
n∈N

Mn converges, then
∑
n∈N

fn converges uniformly on X.

7 The Riemann Integral

7.1 Definition of the Riemann Integral

7.1.1 Partitions, Upper/Lower Sums

Definition. A partition of [a, b] is a finite, ordered set

P = {a = x1 < . . . < xn = b}

For each subinterval [xk, xk+1] of P , let

mk := inf{f(x) : x ∈ [xk, xk+1]} Mk := sup{f(x) : x ∈ [xk, xk+1]}

The lower sum of f with respects to P is

L(f, P ) :=
∑

k≤n−1
mk(xk+1 − xk)

The upper sum of f with respects to P is

U(f, P ) :=
∑

k≤n−1
Mk(xk+1 − xk)

• Clearly, U(f, P ) ≥ L(f, P )

Definition. A partition Q is a refinement of P if P ⊆ Q

Lemma. If Q is a refinement of P , then L(f, P ) ≤ L(f, Q) and U(f, P ) ≥ U(f, Q).

Lemma. If P and Q are partitions, then L(f, P ) ≤ U(f, Q).

7.1.2 Integrability

Definition. Let P ∗ = {partitions of[a, b]}. The upper integral of f is

U(f) := inf{U(f, P ) : P ∈ P ∗}

The lower integral of f is

L(f) := sup{L(f, P ) : P ∈ P ∗}

Lemma. For any bounded f on [a, b], L(f) ≤ U(f).
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Definition. A bounded function f defined on [a, b] is Riemann integrable if U(f) = L(f),
and its integral is defined by ˆ b

a

f = U(f) = L(f)

Theorem (ε-characterization of integrability). A bounded f is integrable over [a, b] if,
and only if, for all ε > 0, there exists Pε of [a, b] suhc that

U(f, Pε) − L(f, Pε) < ε

Corollary. A continuous function over [a, b] is integrable.

7.2 Properties of the Riemann Integral

Theorem. Let f : [a, b] → R be bounded and c ∈ (a, b). f is integrable if, and only if, f

is integrable over [a, c] and [c, b]. If so,
ˆ b

a

fdx =
ˆ c

a

fdx +
ˆ b

c

fdx

Theorem. If both f and g are integrable over [a, b], then

1. The function f + g is integrable on [a, b] with
ˆ b

a

f + gdx =
ˆ b

a

fdx +
ˆ b

a

gdx

2. For every c ∈ R, cf is integrable over [a, b] and
ˆ b

a

cfdx = c

ˆ b

a

fdx

3. If f ≤ g, then ˆ b

a

fdx ≤
ˆ b

a

gdx

4. |f | is integrable over [a, b], and∣∣∣∣∣
ˆ b

a

fdx

∣∣∣∣∣ ≤
ˆ b

a

|f |dx

Theorem. Assume fn → f uniformly on [a, b] and each fn is integrable. Then, f is
integrable and

lim
n→∞

ˆ b

a

fndx =
ˆ b

a

fdx
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7.3 Fundamental Theorem of Calculus

Theorem (FTC 1). If f : [a, b] → R is integrable and F : [a, b] → R satisfies F ′ = f ,
then ˆ b

a

fdx = F (b) − F (a)

Theorem (FTC 2). Let g : [a, b] → R be integrable and define

G(x) =
ˆ x

a

gdy

for all x ∈ [a, b]. Then G is continuous on [a, b]. If g is continuous at some c ∈ [a, b], then
G is differentiable at c and G′(c) = g(c).
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